2015, 2015(special): 733-744. doi: 10.3934/proc.2015.0733

Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model

1. 

Department of Mathematics, School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192

2. 

School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan, Japan

Received  September 2014 Revised  January 2015 Published  November 2015

We study the global existence in time and asymptotic behaviour of solutions of nonlinear evolution equations with strong dissipation and proliferation terms arising in mathematical models of biology and medicine including tumour invasion models.
Citation: Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733
References:
[1]

A. R. A. Anderson and M. A. J. Chaplain, A mathematical model for capillary network formation in the absence of endothelial cell proliferation,, Appl. Math. Lett., 11 (1998), 109.   Google Scholar

[2]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumour-induced angiogenesis,, Bull. Math. Biol., 60 (1998), 857.   Google Scholar

[3]

M. A. J. Chaplain and G. Lolas, Mathematical modeling of cancer invasion of tissue: Dynamic heterogeneity,, Networks and Heterogeneous Media, 1 (2006), 399.   Google Scholar

[4]

B. Davis, Reinforced random walks,, Probability Theory and Related Fields, 84 (1990), 203.   Google Scholar

[5]

P. Dionne, Sur les problemes de Cauchy hyperboliques bien poses,, J. Anal. Math., 10 (1962), 1.   Google Scholar

[6]

Y. Ebihara, On some nonlinear evolution equations with the strong dissipation,, J. Differential Equations, 30 (1978), 149.   Google Scholar

[7]

Y. Ebihara, On some nonlinear evolution equations with the strong dissipation, II,, J. Differential Equations, 34 (1979), 339.   Google Scholar

[8]

Y. Ebihara, On some nonlinear evolution equations with strong dissipation, III,, J. Differential Equations, 45 (1982), 332.   Google Scholar

[9]

A. Kubo, Nonlinear evolution equations associated with mathematical models,, Discrete and Continuous Dynamical Systems supplement 2011, (2011), 881.   Google Scholar

[10]

A. Kubo and T. Suzuki, Asymptotic behavior of the solution to a parabolic ODE system modeling tumour growth,, Differential and Integral Equations, 17 (2004), 721.   Google Scholar

[11]

A. Kubo, T. Suzuki and H. Hoshino, Asymptotic behavior of the solution to a parabolic ODE system,, Mathematical Sciences and Applications, 22 (2005), 121.   Google Scholar

[12]

A. Kubo and T. Suzuki, Mathematical models of tumour angiogenesis,, Journal of Computational and Applied Mathematics, 204 (2007), 48.   Google Scholar

[13]

A. Kubo, N. Saito, T. Suzuki and H. Hoshino, Mathematical models of tumour angiogenesis and simulations,, Theory of Bio-Mathematics and Its Applications, 1499 (2006), 135.   Google Scholar

[14]

H. A. Levine and B. D. Sleeman, A system of reaction and diffusion equations arising in the theory of reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 683.   Google Scholar

[15]

S. Mizohata, The Theory of Partial Differential Equations,, Cambridge Univ. Press. London, (1973).   Google Scholar

[16]

B. D. Sleeman and H.A. Levine, Partial differential equations of chemotaxis and angiogenesis,, Math. Mech. Appl. Sci., 24 (2001), 405.   Google Scholar

[17]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044.   Google Scholar

[18]

A. Kubo and H. Hoshino, Nonlinear evolution equations with strong dissipation and proliferation,, Current Trends in Analysis and Applications, (2015), 233.   Google Scholar

show all references

References:
[1]

A. R. A. Anderson and M. A. J. Chaplain, A mathematical model for capillary network formation in the absence of endothelial cell proliferation,, Appl. Math. Lett., 11 (1998), 109.   Google Scholar

[2]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumour-induced angiogenesis,, Bull. Math. Biol., 60 (1998), 857.   Google Scholar

[3]

M. A. J. Chaplain and G. Lolas, Mathematical modeling of cancer invasion of tissue: Dynamic heterogeneity,, Networks and Heterogeneous Media, 1 (2006), 399.   Google Scholar

[4]

B. Davis, Reinforced random walks,, Probability Theory and Related Fields, 84 (1990), 203.   Google Scholar

[5]

P. Dionne, Sur les problemes de Cauchy hyperboliques bien poses,, J. Anal. Math., 10 (1962), 1.   Google Scholar

[6]

Y. Ebihara, On some nonlinear evolution equations with the strong dissipation,, J. Differential Equations, 30 (1978), 149.   Google Scholar

[7]

Y. Ebihara, On some nonlinear evolution equations with the strong dissipation, II,, J. Differential Equations, 34 (1979), 339.   Google Scholar

[8]

Y. Ebihara, On some nonlinear evolution equations with strong dissipation, III,, J. Differential Equations, 45 (1982), 332.   Google Scholar

[9]

A. Kubo, Nonlinear evolution equations associated with mathematical models,, Discrete and Continuous Dynamical Systems supplement 2011, (2011), 881.   Google Scholar

[10]

A. Kubo and T. Suzuki, Asymptotic behavior of the solution to a parabolic ODE system modeling tumour growth,, Differential and Integral Equations, 17 (2004), 721.   Google Scholar

[11]

A. Kubo, T. Suzuki and H. Hoshino, Asymptotic behavior of the solution to a parabolic ODE system,, Mathematical Sciences and Applications, 22 (2005), 121.   Google Scholar

[12]

A. Kubo and T. Suzuki, Mathematical models of tumour angiogenesis,, Journal of Computational and Applied Mathematics, 204 (2007), 48.   Google Scholar

[13]

A. Kubo, N. Saito, T. Suzuki and H. Hoshino, Mathematical models of tumour angiogenesis and simulations,, Theory of Bio-Mathematics and Its Applications, 1499 (2006), 135.   Google Scholar

[14]

H. A. Levine and B. D. Sleeman, A system of reaction and diffusion equations arising in the theory of reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 683.   Google Scholar

[15]

S. Mizohata, The Theory of Partial Differential Equations,, Cambridge Univ. Press. London, (1973).   Google Scholar

[16]

B. D. Sleeman and H.A. Levine, Partial differential equations of chemotaxis and angiogenesis,, Math. Mech. Appl. Sci., 24 (2001), 405.   Google Scholar

[17]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044.   Google Scholar

[18]

A. Kubo and H. Hoshino, Nonlinear evolution equations with strong dissipation and proliferation,, Current Trends in Analysis and Applications, (2015), 233.   Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[2]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[3]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[4]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[13]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[19]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

 Impact Factor: 

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]