2015, 2015(special): 733-744. doi: 10.3934/proc.2015.0733

Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model

1. 

Department of Mathematics, School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192

2. 

School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan, Japan

Received  September 2014 Revised  January 2015 Published  November 2015

We study the global existence in time and asymptotic behaviour of solutions of nonlinear evolution equations with strong dissipation and proliferation terms arising in mathematical models of biology and medicine including tumour invasion models.
Citation: Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733
References:
[1]

A. R. A. Anderson and M. A. J. Chaplain, A mathematical model for capillary network formation in the absence of endothelial cell proliferation,, Appl. Math. Lett., 11 (1998), 109.   Google Scholar

[2]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumour-induced angiogenesis,, Bull. Math. Biol., 60 (1998), 857.   Google Scholar

[3]

M. A. J. Chaplain and G. Lolas, Mathematical modeling of cancer invasion of tissue: Dynamic heterogeneity,, Networks and Heterogeneous Media, 1 (2006), 399.   Google Scholar

[4]

B. Davis, Reinforced random walks,, Probability Theory and Related Fields, 84 (1990), 203.   Google Scholar

[5]

P. Dionne, Sur les problemes de Cauchy hyperboliques bien poses,, J. Anal. Math., 10 (1962), 1.   Google Scholar

[6]

Y. Ebihara, On some nonlinear evolution equations with the strong dissipation,, J. Differential Equations, 30 (1978), 149.   Google Scholar

[7]

Y. Ebihara, On some nonlinear evolution equations with the strong dissipation, II,, J. Differential Equations, 34 (1979), 339.   Google Scholar

[8]

Y. Ebihara, On some nonlinear evolution equations with strong dissipation, III,, J. Differential Equations, 45 (1982), 332.   Google Scholar

[9]

A. Kubo, Nonlinear evolution equations associated with mathematical models,, Discrete and Continuous Dynamical Systems supplement 2011, (2011), 881.   Google Scholar

[10]

A. Kubo and T. Suzuki, Asymptotic behavior of the solution to a parabolic ODE system modeling tumour growth,, Differential and Integral Equations, 17 (2004), 721.   Google Scholar

[11]

A. Kubo, T. Suzuki and H. Hoshino, Asymptotic behavior of the solution to a parabolic ODE system,, Mathematical Sciences and Applications, 22 (2005), 121.   Google Scholar

[12]

A. Kubo and T. Suzuki, Mathematical models of tumour angiogenesis,, Journal of Computational and Applied Mathematics, 204 (2007), 48.   Google Scholar

[13]

A. Kubo, N. Saito, T. Suzuki and H. Hoshino, Mathematical models of tumour angiogenesis and simulations,, Theory of Bio-Mathematics and Its Applications, 1499 (2006), 135.   Google Scholar

[14]

H. A. Levine and B. D. Sleeman, A system of reaction and diffusion equations arising in the theory of reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 683.   Google Scholar

[15]

S. Mizohata, The Theory of Partial Differential Equations,, Cambridge Univ. Press. London, (1973).   Google Scholar

[16]

B. D. Sleeman and H.A. Levine, Partial differential equations of chemotaxis and angiogenesis,, Math. Mech. Appl. Sci., 24 (2001), 405.   Google Scholar

[17]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044.   Google Scholar

[18]

A. Kubo and H. Hoshino, Nonlinear evolution equations with strong dissipation and proliferation,, Current Trends in Analysis and Applications, (2015), 233.   Google Scholar

show all references

References:
[1]

A. R. A. Anderson and M. A. J. Chaplain, A mathematical model for capillary network formation in the absence of endothelial cell proliferation,, Appl. Math. Lett., 11 (1998), 109.   Google Scholar

[2]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumour-induced angiogenesis,, Bull. Math. Biol., 60 (1998), 857.   Google Scholar

[3]

M. A. J. Chaplain and G. Lolas, Mathematical modeling of cancer invasion of tissue: Dynamic heterogeneity,, Networks and Heterogeneous Media, 1 (2006), 399.   Google Scholar

[4]

B. Davis, Reinforced random walks,, Probability Theory and Related Fields, 84 (1990), 203.   Google Scholar

[5]

P. Dionne, Sur les problemes de Cauchy hyperboliques bien poses,, J. Anal. Math., 10 (1962), 1.   Google Scholar

[6]

Y. Ebihara, On some nonlinear evolution equations with the strong dissipation,, J. Differential Equations, 30 (1978), 149.   Google Scholar

[7]

Y. Ebihara, On some nonlinear evolution equations with the strong dissipation, II,, J. Differential Equations, 34 (1979), 339.   Google Scholar

[8]

Y. Ebihara, On some nonlinear evolution equations with strong dissipation, III,, J. Differential Equations, 45 (1982), 332.   Google Scholar

[9]

A. Kubo, Nonlinear evolution equations associated with mathematical models,, Discrete and Continuous Dynamical Systems supplement 2011, (2011), 881.   Google Scholar

[10]

A. Kubo and T. Suzuki, Asymptotic behavior of the solution to a parabolic ODE system modeling tumour growth,, Differential and Integral Equations, 17 (2004), 721.   Google Scholar

[11]

A. Kubo, T. Suzuki and H. Hoshino, Asymptotic behavior of the solution to a parabolic ODE system,, Mathematical Sciences and Applications, 22 (2005), 121.   Google Scholar

[12]

A. Kubo and T. Suzuki, Mathematical models of tumour angiogenesis,, Journal of Computational and Applied Mathematics, 204 (2007), 48.   Google Scholar

[13]

A. Kubo, N. Saito, T. Suzuki and H. Hoshino, Mathematical models of tumour angiogenesis and simulations,, Theory of Bio-Mathematics and Its Applications, 1499 (2006), 135.   Google Scholar

[14]

H. A. Levine and B. D. Sleeman, A system of reaction and diffusion equations arising in the theory of reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 683.   Google Scholar

[15]

S. Mizohata, The Theory of Partial Differential Equations,, Cambridge Univ. Press. London, (1973).   Google Scholar

[16]

B. D. Sleeman and H.A. Levine, Partial differential equations of chemotaxis and angiogenesis,, Math. Mech. Appl. Sci., 24 (2001), 405.   Google Scholar

[17]

H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks,, SIAM J. Appl. Math., 57 (1997), 1044.   Google Scholar

[18]

A. Kubo and H. Hoshino, Nonlinear evolution equations with strong dissipation and proliferation,, Current Trends in Analysis and Applications, (2015), 233.   Google Scholar

[1]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[2]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 203-209. doi: 10.3934/dcdss.2020011

[3]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[4]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[5]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[6]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[7]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[8]

Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483

[9]

Diana M. Thomas, Lynn Vandemuelebroeke, Kenneth Yamaguchi. A mathematical evolution model for phytoremediation of metals. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 411-422. doi: 10.3934/dcdsb.2005.5.411

[10]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[11]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[12]

Adam Sullivan, Folashade Agusto, Sharon Bewick, Chunlei Su, Suzanne Lenhart, Xiaopeng Zhao. A mathematical model for within-host Toxoplasma gondii invasion dynamics. Mathematical Biosciences & Engineering, 2012, 9 (3) : 647-662. doi: 10.3934/mbe.2012.9.647

[13]

Florian Rupp, Jürgen Scheurle. Analysis of a mathematical model for jellyfish blooms and the cambric fish invasion. Conference Publications, 2013, 2013 (special) : 663-672. doi: 10.3934/proc.2013.2013.663

[14]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[15]

Philippe Michel, Bhargav Kumar Kakumani. GRE methods for nonlinear model of evolution equation and limited ressource environment. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6653-6673. doi: 10.3934/dcdsb.2019161

[16]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[17]

Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206

[18]

Xinmin Xiang. The long-time behaviour for nonlinear Schrödinger equation and its rational pseudospectral approximation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 469-488. doi: 10.3934/dcdsb.2005.5.469

[19]

Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881

[20]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

 Impact Factor: 

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]