
Previous Article
An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem
 PROC Home
 This Issue

Next Article
Solvability of a class of complex GinzburgLandau equations in periodic Sobolev spaces
Decomposition of discrete linearquadratic optimal control problems for switching systems
1.  Voronezh State University, Universitetskaya pl., 1, Voronezh, 394006, Russian Federation 
2.  Yasar University, University aven., 3537, Izmir, 35100, Turkey 
References:
[1] 
G. Zhai, H. Lin, X. Xu, J. Imae and T. Kobayashi, Analysis of switched normal discretetime systems,, Nonlinear Analysis. Theory Methods Appl., 66 (2007), 1788. Google Scholar 
[2] 
S. S. Ge, Zhendong Sun and T. H. Lee, Reachability and controllability of switched linear discretetime systems,, IEEE Transactions on Automatic Control., 46 (2001), 1437. Google Scholar 
[3] 
Sh. F. Magerramov and K. B. Mansimov, Optimization of a class of discrete step control systems,, Computational Mathematics and Mathematical Physics, 41 (2001), 334. Google Scholar 
[4] 
A. Heydari and S. N. Balakrishnan, Optimal switching between autonomous subsystems,, Journal of the Franklin Institute., 351 (2014), 2675. Google Scholar 
[5] 
G. A. Kurina and Y. Zhou, Decomposition of linearquadratic optimal control problems for twosteps systems,, Doklady Mathematics, 83 (2011), 275. Google Scholar 
[6] 
G. A. Kurina, On decomposition of linearquadratic optimal control problems for twosteps descriptor systems,, in 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDCECC), (2011), 6705. Google Scholar 
[7] 
H. Abou  Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in Control and Systems Theory,, Birkhäuser Verlag, (2003). Google Scholar 
[8] 
D. S. Naidu, Optimal Control Systems,, CRC Press, (2003). Google Scholar 
[9] 
E. R. Smolyakov, Unknown pages of optimal control history,, Editorial URSS, (2002). Google Scholar 
[10] 
A. V. Dmitruk and A. M. Kaganovich, The hybrid maximum principle is a consequence of Pontryagin maximum principle,, Systems and Control Letters, 57 (2008), 964. Google Scholar 
[11] 
G. A. Kurina and E. V. Smirnova, Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters, Kurina, 170 (2010), 192. Google Scholar 
show all references
References:
[1] 
G. Zhai, H. Lin, X. Xu, J. Imae and T. Kobayashi, Analysis of switched normal discretetime systems,, Nonlinear Analysis. Theory Methods Appl., 66 (2007), 1788. Google Scholar 
[2] 
S. S. Ge, Zhendong Sun and T. H. Lee, Reachability and controllability of switched linear discretetime systems,, IEEE Transactions on Automatic Control., 46 (2001), 1437. Google Scholar 
[3] 
Sh. F. Magerramov and K. B. Mansimov, Optimization of a class of discrete step control systems,, Computational Mathematics and Mathematical Physics, 41 (2001), 334. Google Scholar 
[4] 
A. Heydari and S. N. Balakrishnan, Optimal switching between autonomous subsystems,, Journal of the Franklin Institute., 351 (2014), 2675. Google Scholar 
[5] 
G. A. Kurina and Y. Zhou, Decomposition of linearquadratic optimal control problems for twosteps systems,, Doklady Mathematics, 83 (2011), 275. Google Scholar 
[6] 
G. A. Kurina, On decomposition of linearquadratic optimal control problems for twosteps descriptor systems,, in 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDCECC), (2011), 6705. Google Scholar 
[7] 
H. Abou  Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in Control and Systems Theory,, Birkhäuser Verlag, (2003). Google Scholar 
[8] 
D. S. Naidu, Optimal Control Systems,, CRC Press, (2003). Google Scholar 
[9] 
E. R. Smolyakov, Unknown pages of optimal control history,, Editorial URSS, (2002). Google Scholar 
[10] 
A. V. Dmitruk and A. M. Kaganovich, The hybrid maximum principle is a consequence of Pontryagin maximum principle,, Systems and Control Letters, 57 (2008), 964. Google Scholar 
[11] 
G. A. Kurina and E. V. Smirnova, Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters, Kurina, 170 (2010), 192. Google Scholar 
[1] 
Russell Johnson, Carmen Núñez. Remarks on linearquadratic dissipative control systems. Discrete & Continuous Dynamical Systems  B, 2015, 20 (3) : 889914. doi: 10.3934/dcdsb.2015.20.889 
[2] 
Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 4755. doi: 10.3934/jimo.2010.6.47 
[3] 
Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linearquadratic multiobjective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789809. doi: 10.3934/jimo.2011.7.789 
[4] 
Hongyan Yan, Yun Sun, Yuanguo Zhu. A linearquadratic control problem of uncertain discretetime switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267282. doi: 10.3934/jimo.2016016 
[5] 
Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linearquadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems  B, 2007, 8 (2) : 261277. doi: 10.3934/dcdsb.2007.8.261 
[6] 
Walter Alt, Robert Baier, Matthias Gerdts, Frank Lempio. Error bounds for Euler approximation of linearquadratic control problems with bangbang solutions. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 547570. doi: 10.3934/naco.2012.2.547 
[7] 
Georg Vossen, Stefan Volkwein. Model reduction techniques with aposteriori error analysis for linearquadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465485. doi: 10.3934/naco.2012.2.465 
[8] 
Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closedloop solvability of stochastic linearquadratic optimal control problems. Discrete & Continuous Dynamical Systems  A, 2019, 39 (5) : 27852805. doi: 10.3934/dcds.2019117 
[9] 
Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linearquadratic dissipative control processes with timevarying coefficients. Discrete & Continuous Dynamical Systems  A, 2013, 33 (1) : 193210. doi: 10.3934/dcds.2013.33.193 
[10] 
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 17431767. doi: 10.3934/dcdsb.2018235 
[11] 
Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained statelinear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201210. doi: 10.3934/naco.2017014 
[12] 
Victor Kozyakin. Minimax joint spectral radius and stabilizability of discretetime linear switching control systems. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 35373556. doi: 10.3934/dcdsb.2018277 
[13] 
Jianhui Huang, Xun Li, Jiongmin Yong. A linearquadratic optimal control problem for meanfield stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97139. doi: 10.3934/mcrf.2015.5.97 
[14] 
Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linearquadratic polynomial discontinuous differential systems. Discrete & Continuous Dynamical Systems  B, 2017, 22 (10) : 39533965. doi: 10.3934/dcdsb.2017203 
[15] 
MiniakGórecka Alicja, Nowakowski Andrzej. Sufficient optimality conditions for a class of epidemic problems with control on the boundary. Mathematical Biosciences & Engineering, 2017, 14 (1) : 263275. doi: 10.3934/mbe.2017017 
[16] 
Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial & Management Optimization, 2015, 11 (1) : 329343. doi: 10.3934/jimo.2015.11.329 
[17] 
Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems  A, 2011, 29 (2) : 559575. doi: 10.3934/dcds.2011.29.559 
[18] 
Ana P. LemosPaião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed statelinear optimal control problems. Discrete & Continuous Dynamical Systems  B, 2019, 24 (5) : 22932313. doi: 10.3934/dcdsb.2019096 
[19] 
Ziye Shi, Qingwei Jin. Second order optimality conditions and reformulations for nonconvex quadratically constrained quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 871882. doi: 10.3934/jimo.2014.10.871 
[20] 
Yong Xia. New sufficient global optimality conditions for linearly constrained bivalent quadratic optimization problems. Journal of Industrial & Management Optimization, 2009, 5 (4) : 881892. doi: 10.3934/jimo.2009.5.881 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]