2015, 2015(special): 775-782. doi: 10.3934/proc.2015.0775

An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem

1. 

Department of Mathematics, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, United States

Received  September 2014 Revised  February 2015 Published  November 2015

In this article, we show the existence of an antisymmetric solution to the second order boundary value problem $x''+f(x(t))=0,\; t\in(0,n)$ satisfying antiperiodic boundary conditions $x(0)+x(n)=0,\; x'(0)+x'(n)=0$ using an Avery et. al. fixed point theorem which itself is an extension of the traditional Leggett-Williams fixed point theorem. The antisymmetric solution satisfies $x(t)=-x(n-t)$ for $t\in[0,n]$ and is nonnegative, nonincreasing, and concave for $t\in[0,n/2]$. To conclude, we present an example.
Citation: Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775
References:
[1]

A. A. Altwaty and P. W. Eloe, The role of concavity in applications of Avery type fixed point theorems to higher order differential equations,, J. Math Inequal., 6 (2012), 79.

[2]

A. A. Altwaty and P. W. Eloe, Concavity of solutions of a $2n$-th order problem with symmetry,, Opuscula Math., 33 (2013), 603.

[3]

D. R. Anderson and R. I. Avery, Fixed point theorem of cone expansion and compression of functional type,, J. Difference Equ. Appl., 8 (2002), 1073.

[4]

D. R. Anderson, R. I. Avery and J. Henderson, Functional expansion-compression fixed point theorem of Leggett-Williams type,, Electron. J. Differential Equations, 2010 (): 1.

[5]

D. R. Anderson, R. I. Avery, J. Henderson and X. Liu, Operator type expansion-compression fixed point theorem,, Electron. J. Differential Equations, 2011 (): 1.

[6]

D. R. Anderson, R. I. Avery, J. Henderson and X. Liu, Fixed point theorem utilizing operators and functionals,, Electron. J. Qual. Theory Differ. Equ., 2012 (): 1.

[7]

D. R. Anderson, R. I. Avery, J. Henderson, X. Liu and J. W. Lyons, Existence of a positive solution for a right focal discrete boundary value problem,, J. Difference Equ. Appl., 17 (2011), 1635.

[8]

J. Andres and V. Vlček, Green's functions for periodic and anti-periodic BVPs to second-order ODEs,, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 32 (1993), 7.

[9]

R. I. Avery, D. R. Anderson and J. Henderson, A topological proof and extension of the Leggett-Williams fixed point theorem,, Comm. Appl. Nonlinear Anal., 16 (2009), 39.

[10]

R. I. Avery, D. R. Anderson and J. Henderson, Existence of a positive solution to a right focal boundary value problem,, Electron. J. Qual. Theory Differ. Equ., 2010 (): 1.

[11]

R. I. Avery, P. W. Eloe and J. Henderson, A Leggett-Willaims type theorem applied to a fourth order problem,, Commun. Appl. Anal., 16 (2012), 579.

[12]

C. Bai, On the solvability of anti-periodic boundary value problems with impulse,, Electron. J. Qual. Theory Differ. Equ., 2009 (): 1.

[13]

M. Benchohra, N. Hamidi and J. Henderson, Fractional differential equations with anti-periodic boundary conditions,, Numer. Funct. Anal. Optim., 34 (2013), 404.

[14]

D. Franco, J. J. Nieto and D. O'Regan, Anti-periodic boundary value problem for nonlinear first order ordinary differential equations,, Math. Inequal. Appl., 6 (2003), 477.

[15]

R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces,, Indiana Univ. Math. J., 28 (1979), 673.

[16]

X. Liu, J. T. Neugebauer and S. Sutherland, Application of a functional type compression expansion fixed point theorem for a right focal boundary value problem on a time scale,, Comm. Appl. Nonlinear Anal., 19 (2012), 25.

[17]

J. W. Lyons and J. T. Neugebauer, Existence of a positive solution for a right focal dynamic boundary value problem,, Nonlinear Dyn. Syst. Theory, 14 (2014), 76.

[18]

J. T. Neugebauer and C. L. Seelbach, Positive symmetric solutions of a second order difference equation,, Involve, 5 (2012), 497.

[19]

G. F. Roach, Green's Functions,, $2^{nd}$ edition, (1982).

show all references

References:
[1]

A. A. Altwaty and P. W. Eloe, The role of concavity in applications of Avery type fixed point theorems to higher order differential equations,, J. Math Inequal., 6 (2012), 79.

[2]

A. A. Altwaty and P. W. Eloe, Concavity of solutions of a $2n$-th order problem with symmetry,, Opuscula Math., 33 (2013), 603.

[3]

D. R. Anderson and R. I. Avery, Fixed point theorem of cone expansion and compression of functional type,, J. Difference Equ. Appl., 8 (2002), 1073.

[4]

D. R. Anderson, R. I. Avery and J. Henderson, Functional expansion-compression fixed point theorem of Leggett-Williams type,, Electron. J. Differential Equations, 2010 (): 1.

[5]

D. R. Anderson, R. I. Avery, J. Henderson and X. Liu, Operator type expansion-compression fixed point theorem,, Electron. J. Differential Equations, 2011 (): 1.

[6]

D. R. Anderson, R. I. Avery, J. Henderson and X. Liu, Fixed point theorem utilizing operators and functionals,, Electron. J. Qual. Theory Differ. Equ., 2012 (): 1.

[7]

D. R. Anderson, R. I. Avery, J. Henderson, X. Liu and J. W. Lyons, Existence of a positive solution for a right focal discrete boundary value problem,, J. Difference Equ. Appl., 17 (2011), 1635.

[8]

J. Andres and V. Vlček, Green's functions for periodic and anti-periodic BVPs to second-order ODEs,, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 32 (1993), 7.

[9]

R. I. Avery, D. R. Anderson and J. Henderson, A topological proof and extension of the Leggett-Williams fixed point theorem,, Comm. Appl. Nonlinear Anal., 16 (2009), 39.

[10]

R. I. Avery, D. R. Anderson and J. Henderson, Existence of a positive solution to a right focal boundary value problem,, Electron. J. Qual. Theory Differ. Equ., 2010 (): 1.

[11]

R. I. Avery, P. W. Eloe and J. Henderson, A Leggett-Willaims type theorem applied to a fourth order problem,, Commun. Appl. Anal., 16 (2012), 579.

[12]

C. Bai, On the solvability of anti-periodic boundary value problems with impulse,, Electron. J. Qual. Theory Differ. Equ., 2009 (): 1.

[13]

M. Benchohra, N. Hamidi and J. Henderson, Fractional differential equations with anti-periodic boundary conditions,, Numer. Funct. Anal. Optim., 34 (2013), 404.

[14]

D. Franco, J. J. Nieto and D. O'Regan, Anti-periodic boundary value problem for nonlinear first order ordinary differential equations,, Math. Inequal. Appl., 6 (2003), 477.

[15]

R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces,, Indiana Univ. Math. J., 28 (1979), 673.

[16]

X. Liu, J. T. Neugebauer and S. Sutherland, Application of a functional type compression expansion fixed point theorem for a right focal boundary value problem on a time scale,, Comm. Appl. Nonlinear Anal., 19 (2012), 25.

[17]

J. W. Lyons and J. T. Neugebauer, Existence of a positive solution for a right focal dynamic boundary value problem,, Nonlinear Dyn. Syst. Theory, 14 (2014), 76.

[18]

J. T. Neugebauer and C. L. Seelbach, Positive symmetric solutions of a second order difference equation,, Involve, 5 (2012), 497.

[19]

G. F. Roach, Green's Functions,, $2^{nd}$ edition, (1982).

[1]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[2]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[3]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[4]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[5]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[6]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[7]

Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381

[8]

Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621

[9]

Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645

[10]

Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467

[11]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[12]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[13]

Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial & Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487

[14]

Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843

[15]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

[16]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

[17]

Zhijing Chen, Yu Huang. Functional envelopes relative to the point-open topology on a subset. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1227-1246. doi: 10.3934/dcds.2017051

[18]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[19]

Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379

[20]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

 Impact Factor: 

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]