-
Previous Article
Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system
- PROC Home
- This Issue
-
Next Article
Potential estimates and applications to elliptic equations
Strong solutions to a class of boundary value problems on a mixed Riemannian--Lorentzian metric
1. | Dipartimento di Matematica, Università di L'Aquila, 67100 L'Aquila, Italy |
2. | Department of Mathematical Sciences, Yeshiva University, New York, NY 10033, United States |
References:
show all references
References:
[1] |
Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182 |
[2] |
Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic and Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008 |
[3] |
Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43 |
[4] |
Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363 |
[5] |
Kyril Tintarev. Positive solutions of elliptic equations with a critical oscillatory nonlinearity. Conference Publications, 2007, 2007 (Special) : 974-981. doi: 10.3934/proc.2007.2007.974 |
[6] |
Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193 |
[7] |
Jun Bao, Lihe Wang, Chunqin Zhou. Positive solutions to elliptic equations in unbounded cylinder. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1389-1400. doi: 10.3934/dcdsb.2016001 |
[8] |
Sibei Yang, Dachun Yang, Wenxian Ma. Global regularity estimates for Neumann problems of elliptic operators with coefficients having a BMO anti-symmetric part in NTA domains. Communications on Pure and Applied Analysis, 2022, 21 (3) : 959-998. doi: 10.3934/cpaa.2022006 |
[9] |
Ismail Kombe. On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5167-5176. doi: 10.3934/dcds.2013.33.5167 |
[10] |
Jeffrey R. L. Webb. Positive solutions of nonlinear equations via comparison with linear operators. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5507-5519. doi: 10.3934/dcds.2013.33.5507 |
[11] |
Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751 |
[12] |
Peter Poláčik. On the multiplicity of nonnegative solutions with a nontrivial nodal set for elliptic equations on symmetric domains. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2657-2667. doi: 10.3934/dcds.2014.34.2657 |
[13] |
Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039 |
[14] |
Zhuoran Du. Some properties of positive radial solutions for some semilinear elliptic equations. Communications on Pure and Applied Analysis, 2010, 9 (4) : 943-953. doi: 10.3934/cpaa.2010.9.943 |
[15] |
Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50 |
[16] |
Antonio Ambrosetti, Zhi-Qiang Wang. Positive solutions to a class of quasilinear elliptic equations on $\mathbb R$. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 55-68. doi: 10.3934/dcds.2003.9.55 |
[17] |
Shinji Adachi, Masataka Shibata, Tatsuya Watanabe. Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 97-118. doi: 10.3934/cpaa.2014.13.97 |
[18] |
Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044 |
[19] |
Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713 |
[20] |
Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]