2015, 2015(special): 809-816. doi: 10.3934/proc.2015.0809

Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system

1. 

Department of Mathematics and Computer Science, University of Cagliari, V. le Merello 92, 09123. Cagliari

2. 

Department of Mathematics and Computer Science, University of Cagliari, V. Ospedale 72, 09124. Cagliari, Italy

Received  September 2014 Revised  February 2015 Published  November 2015

This paper deals with a parabolic-parabolic Keller-Segel system, modeling chemotaxis, with time dependent coefficients. We consider non-negative solutions of the system which blow up in finite time $t^*$ and an explicit lower bound for $t^*$ is derived under sufficient conditions on the coefficients and the spatial domain.
Citation: Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809
References:
[1]

M. A. Farina, M. Marras and G. Viglialoro, On explicit lower bounds and blow-up times in a model of chemotaxis,, Dynamical Systems, (2015), 409. Google Scholar

[2]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I,, Jahresber. Deutsch. Math.-Verein. 105, 105 (2003), 103. Google Scholar

[3]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, II,, Jahresber. Deutsch. Math.-Verein, 106 (2004), 51. Google Scholar

[4]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. Google Scholar

[5]

W. Jager and S. Luckhaus, On explosion of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. Google Scholar

[6]

E. F. Keller and A. Segel A, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26 (1970), 399. Google Scholar

[7]

M. Marras and S. Vernier-Piro, Blow up and decay bounds in quasilinear parabolic problems,, Discrete Contin. Dyn. Syst., (2007), 704. Google Scholar

[8]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim., 32 (2011). Google Scholar

[9]

M. Marras and S. Vernier Piro, Bounds for blow-up time in nonlinear parabolic system,, Discrete Contin. Dyn. Syst., (2011), 1025. Google Scholar

[10]

M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discrete Contin. Dyn. Syst., 32 (2012), 4001. Google Scholar

[11]

M. Marras, S. Vernier-Piro and G. Viglialoro, Estimate from below of blow-up time in a parabolic system with gradient term,, Int. J. Pure Appl. Math., 93 (2014), 297. Google Scholar

[12]

L. E. Payne, G.A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II,, Nonlinear Analysis-Theor., 73 (2010), 971. Google Scholar

[13]

L. E. Payne and G.A. Philippin, Blow-up Phenomena for a Class of Parabolic Systems with Time Dependent Coefficients,, Appl. Math., 3 (2012), 325. Google Scholar

[14]

L. E. Payne and P.W. Schaefer, Lower bound for blow-up time in parabolic problems under Neumann conditions,, Appl. Anal., 85 (2006), 1301. Google Scholar

[15]

L. E. Payne and J.C. Song, Lower bound for blow-up in a model of chemotaxis,, J. Math. Anal. Appl., 385 (2012), 672. Google Scholar

[16]

N. Mizoguchi and Ph. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel System,, Ann. I. H. Poincaré-AN., 31 (2014), 851. Google Scholar

[17]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria,, J. Math. Anal. Appl., 381 (2011), 521. Google Scholar

[18]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differ. Equations, 252 (2012), 2520. Google Scholar

[19]

G. Viglialoro, On the blow-up time of a parabolic system with damping terms,, C. R. Acad. Bulg. Sci., 67 (2014), 1223. Google Scholar

[20]

M. Winkler, Finite time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748. Google Scholar

show all references

References:
[1]

M. A. Farina, M. Marras and G. Viglialoro, On explicit lower bounds and blow-up times in a model of chemotaxis,, Dynamical Systems, (2015), 409. Google Scholar

[2]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I,, Jahresber. Deutsch. Math.-Verein. 105, 105 (2003), 103. Google Scholar

[3]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, II,, Jahresber. Deutsch. Math.-Verein, 106 (2004), 51. Google Scholar

[4]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. Google Scholar

[5]

W. Jager and S. Luckhaus, On explosion of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. Google Scholar

[6]

E. F. Keller and A. Segel A, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26 (1970), 399. Google Scholar

[7]

M. Marras and S. Vernier-Piro, Blow up and decay bounds in quasilinear parabolic problems,, Discrete Contin. Dyn. Syst., (2007), 704. Google Scholar

[8]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim., 32 (2011). Google Scholar

[9]

M. Marras and S. Vernier Piro, Bounds for blow-up time in nonlinear parabolic system,, Discrete Contin. Dyn. Syst., (2011), 1025. Google Scholar

[10]

M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discrete Contin. Dyn. Syst., 32 (2012), 4001. Google Scholar

[11]

M. Marras, S. Vernier-Piro and G. Viglialoro, Estimate from below of blow-up time in a parabolic system with gradient term,, Int. J. Pure Appl. Math., 93 (2014), 297. Google Scholar

[12]

L. E. Payne, G.A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II,, Nonlinear Analysis-Theor., 73 (2010), 971. Google Scholar

[13]

L. E. Payne and G.A. Philippin, Blow-up Phenomena for a Class of Parabolic Systems with Time Dependent Coefficients,, Appl. Math., 3 (2012), 325. Google Scholar

[14]

L. E. Payne and P.W. Schaefer, Lower bound for blow-up time in parabolic problems under Neumann conditions,, Appl. Anal., 85 (2006), 1301. Google Scholar

[15]

L. E. Payne and J.C. Song, Lower bound for blow-up in a model of chemotaxis,, J. Math. Anal. Appl., 385 (2012), 672. Google Scholar

[16]

N. Mizoguchi and Ph. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel System,, Ann. I. H. Poincaré-AN., 31 (2014), 851. Google Scholar

[17]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria,, J. Math. Anal. Appl., 381 (2011), 521. Google Scholar

[18]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differ. Equations, 252 (2012), 2520. Google Scholar

[19]

G. Viglialoro, On the blow-up time of a parabolic system with damping terms,, C. R. Acad. Bulg. Sci., 67 (2014), 1223. Google Scholar

[20]

M. Winkler, Finite time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748. Google Scholar

[1]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[2]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[3]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[4]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[5]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[6]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[7]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[8]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[9]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 233-255. doi: 10.3934/dcdss.2020013

[10]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096

[11]

Maria Antonietta Farina, Monica Marras, Giuseppe Viglialoro. On explicit lower bounds and blow-up times in a model of chemotaxis. Conference Publications, 2015, 2015 (special) : 409-417. doi: 10.3934/proc.2015.0409

[12]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[13]

María J. Cáceres, Ricarda Schneider. Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models. Kinetic & Related Models, 2017, 10 (3) : 587-612. doi: 10.3934/krm.2017024

[14]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[15]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[16]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[17]

Julián López-Gómez, Pavol Quittner. Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 169-186. doi: 10.3934/dcds.2006.14.169

[18]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[19]

Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489

[20]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

 Impact Factor: 

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (0)

[Back to Top]