2015, 2015(special): 809-816. doi: 10.3934/proc.2015.0809

Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system

1. 

Department of Mathematics and Computer Science, University of Cagliari, V. le Merello 92, 09123. Cagliari

2. 

Department of Mathematics and Computer Science, University of Cagliari, V. Ospedale 72, 09124. Cagliari, Italy

Received  September 2014 Revised  February 2015 Published  November 2015

This paper deals with a parabolic-parabolic Keller-Segel system, modeling chemotaxis, with time dependent coefficients. We consider non-negative solutions of the system which blow up in finite time $t^*$ and an explicit lower bound for $t^*$ is derived under sufficient conditions on the coefficients and the spatial domain.
Citation: Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809
References:
[1]

M. A. Farina, M. Marras and G. Viglialoro, On explicit lower bounds and blow-up times in a model of chemotaxis,, Dynamical Systems, (2015), 409.   Google Scholar

[2]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I,, Jahresber. Deutsch. Math.-Verein. 105, 105 (2003), 103.   Google Scholar

[3]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, II,, Jahresber. Deutsch. Math.-Verein, 106 (2004), 51.   Google Scholar

[4]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52.   Google Scholar

[5]

W. Jager and S. Luckhaus, On explosion of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.   Google Scholar

[6]

E. F. Keller and A. Segel A, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26 (1970), 399.   Google Scholar

[7]

M. Marras and S. Vernier-Piro, Blow up and decay bounds in quasilinear parabolic problems,, Discrete Contin. Dyn. Syst., (2007), 704.   Google Scholar

[8]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim., 32 (2011).   Google Scholar

[9]

M. Marras and S. Vernier Piro, Bounds for blow-up time in nonlinear parabolic system,, Discrete Contin. Dyn. Syst., (2011), 1025.   Google Scholar

[10]

M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discrete Contin. Dyn. Syst., 32 (2012), 4001.   Google Scholar

[11]

M. Marras, S. Vernier-Piro and G. Viglialoro, Estimate from below of blow-up time in a parabolic system with gradient term,, Int. J. Pure Appl. Math., 93 (2014), 297.   Google Scholar

[12]

L. E. Payne, G.A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II,, Nonlinear Analysis-Theor., 73 (2010), 971.   Google Scholar

[13]

L. E. Payne and G.A. Philippin, Blow-up Phenomena for a Class of Parabolic Systems with Time Dependent Coefficients,, Appl. Math., 3 (2012), 325.   Google Scholar

[14]

L. E. Payne and P.W. Schaefer, Lower bound for blow-up time in parabolic problems under Neumann conditions,, Appl. Anal., 85 (2006), 1301.   Google Scholar

[15]

L. E. Payne and J.C. Song, Lower bound for blow-up in a model of chemotaxis,, J. Math. Anal. Appl., 385 (2012), 672.   Google Scholar

[16]

N. Mizoguchi and Ph. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel System,, Ann. I. H. Poincaré-AN., 31 (2014), 851.   Google Scholar

[17]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria,, J. Math. Anal. Appl., 381 (2011), 521.   Google Scholar

[18]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differ. Equations, 252 (2012), 2520.   Google Scholar

[19]

G. Viglialoro, On the blow-up time of a parabolic system with damping terms,, C. R. Acad. Bulg. Sci., 67 (2014), 1223.   Google Scholar

[20]

M. Winkler, Finite time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748.   Google Scholar

show all references

References:
[1]

M. A. Farina, M. Marras and G. Viglialoro, On explicit lower bounds and blow-up times in a model of chemotaxis,, Dynamical Systems, (2015), 409.   Google Scholar

[2]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I,, Jahresber. Deutsch. Math.-Verein. 105, 105 (2003), 103.   Google Scholar

[3]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, II,, Jahresber. Deutsch. Math.-Verein, 106 (2004), 51.   Google Scholar

[4]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52.   Google Scholar

[5]

W. Jager and S. Luckhaus, On explosion of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.   Google Scholar

[6]

E. F. Keller and A. Segel A, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26 (1970), 399.   Google Scholar

[7]

M. Marras and S. Vernier-Piro, Blow up and decay bounds in quasilinear parabolic problems,, Discrete Contin. Dyn. Syst., (2007), 704.   Google Scholar

[8]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim., 32 (2011).   Google Scholar

[9]

M. Marras and S. Vernier Piro, Bounds for blow-up time in nonlinear parabolic system,, Discrete Contin. Dyn. Syst., (2011), 1025.   Google Scholar

[10]

M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discrete Contin. Dyn. Syst., 32 (2012), 4001.   Google Scholar

[11]

M. Marras, S. Vernier-Piro and G. Viglialoro, Estimate from below of blow-up time in a parabolic system with gradient term,, Int. J. Pure Appl. Math., 93 (2014), 297.   Google Scholar

[12]

L. E. Payne, G.A. Philippin and S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, II,, Nonlinear Analysis-Theor., 73 (2010), 971.   Google Scholar

[13]

L. E. Payne and G.A. Philippin, Blow-up Phenomena for a Class of Parabolic Systems with Time Dependent Coefficients,, Appl. Math., 3 (2012), 325.   Google Scholar

[14]

L. E. Payne and P.W. Schaefer, Lower bound for blow-up time in parabolic problems under Neumann conditions,, Appl. Anal., 85 (2006), 1301.   Google Scholar

[15]

L. E. Payne and J.C. Song, Lower bound for blow-up in a model of chemotaxis,, J. Math. Anal. Appl., 385 (2012), 672.   Google Scholar

[16]

N. Mizoguchi and Ph. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel System,, Ann. I. H. Poincaré-AN., 31 (2014), 851.   Google Scholar

[17]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria,, J. Math. Anal. Appl., 381 (2011), 521.   Google Scholar

[18]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differ. Equations, 252 (2012), 2520.   Google Scholar

[19]

G. Viglialoro, On the blow-up time of a parabolic system with damping terms,, C. R. Acad. Bulg. Sci., 67 (2014), 1223.   Google Scholar

[20]

M. Winkler, Finite time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748.   Google Scholar

[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[5]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[6]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[7]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[8]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[12]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[13]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[14]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[17]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[18]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[19]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

 Impact Factor: 

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (0)

[Back to Top]