Citation: |
[1] |
D. Andreucci and A. Tedeev, A Fujita type result for a degenerate Neumann problem in domains with non compact boundary, J. Math. Anal. Appl., 231 (1999), 543-567. |
[2] |
G.I. Barenblatt, On self-similar motions of compressible fluids in porous media, Prikl. Mat. Mekh., 16 (1952), 679-698 (in Russian). |
[3] |
K. Deng and H.A. Levine, The role of critical exponents in blowup theorems: The sequel, J. Math. Anal. Appl., 243 (2000), 85-126. |
[4] |
P. Drábek and J. Milota, Methods of Nonlinear Analysis, Birkhäuser Advanced Texts, Birkhäuser, 2007. |
[5] |
H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. |
[6] |
V.A. Galaktionov, Conditions for global nonexistence and localization for a class of nonlinear parabolic equations, USSR Computational Mathematics and Mathematical Physics, 23(6) (1983), 35-44. |
[7] |
V.A. Galaktionov and H.A. Levine, A general approach to critical Fujita exponents in nonlinear parbolic problems, Nonlinear Analysis, 34 (1998), 1005-1027. |
[8] |
A. Haraux and F.B. Weissler, Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J., 31 (1982), 167-189. |
[9] |
Xinfeng Liu and Mingxin Wang, The critical exponent of doubly singular parabolic equations, Journal of Mathematical Analysis and Applications, 257 (2001), 170-188. |
[10] |
H.A. Levine, The role of critical exponents in blowup theorems, SIAM Review, 32 (1990), 262-288. |
[11] |
A. Matas and J. Merker, Existence of weak solutions to doubly degenerate diffusion equations, Applications of Mathematics, 57 (2012), 43-69. |
[12] |
D.J. Needham and P.G. Chamberlain, Global similarity solutions to a class of semilinear parabolic equations: existence, bifurcations and asymptotics, Proc. R. Soc. Lond. A, 454 (1998), 1933-1959. |
[13] |
F. Otto, $L^1$-Contraction and Uniqueness for Quasilinear Elliptic-Parabolic Equations, Journal of Differential Equations, 131 (1996), 20-38. |
[14] |
A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov and A.P. Mikhailov, Blow-up in quasilinear parabolic equations, de Gruyter expositions in mathematics 19, de Gruyter, 1995. |
[15] |
P. Souplet and F.B. Weissler, Self-similar subsolutions and blowup for nonlinear parabolic equations, Journal of Mathematical Analysis and Applications, 212 (1997), 60-74. |
[16] |
M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic problems, Publ. RIMS Kyoto Univ., 8 (1972/73), 211-229. |
[17] |
J.L. Vázquez, Smoothing and decay estimates for nonlinear diffusion equations, Oxford lecture series in mathematics and its applications 33, Oxford University Press, 2006. |
[18] |
J.L. Vázquez, The porous medium equation, Oxford mathematical monographs, Oxford University Press, 2007. |