2015, 2015(special): 826-834. doi: 10.3934/proc.2015.0826

Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation

1. 

Department of Mathematics and Applications, University of Naples Federico II, via Cintia, I-80126 Naples

Received  September 2014 Revised  July 2015 Published  November 2015

We consider a SIS epidemic model based on a Volterra integral equation and we compare the dynamical behavior of the analytical solution and its numerical approximation obtained by direct quadrature methods. We prove that, under suitable assumptions, the numerical scheme preserves the qualitative properties of the continuous equation and we show that, as the stepsize tends to zero, the numerical bifurcation points tend to the continuous ones.
Citation: Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826
References:
[1]

R. P.Agarwal and D. O'Regan, Integral and Integrodifferential Equations: Theory, Methods and Applications., Gordon and Breach Science Publishers, (2000).   Google Scholar

[2]

M. Annunziato, H. Brunner and E. Messina, Asymptotic stability of solutions to Volterra-renewal integral equations with space maps,, J. Math. Anal. Appl., 395 (2012), 766.   Google Scholar

[3]

C. T. H. Baker and M. S. Keech, Stability regions in the numerical treatment of Volterra integral equations,, SIAM J. Numer. Anal., 15 (1978), 394.   Google Scholar

[4]

F. Brauer, On a nonlinear integral equation for population growth problems,, SIAM J. Math. Anal., 6 (1975), 312.   Google Scholar

[5]

H. Brunner, Collocation methods for Volterra integral and related functional differential equations,, Cambridge Monographs on Applied and Computational Mathematics, (2004).   Google Scholar

[6]

H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations,, CWI Monographs, (1986).   Google Scholar

[7]

A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities,, Adv. in Appl. Probab., 19 (1987), 784.   Google Scholar

[8]

K. L. Cooke, An epidemic equation with immigration,, Math. Biosci., 29 (1976), 1.   Google Scholar

[9]

O. Diekmann, Limiting behaviour in an epidemic model,, Nonlinear Anal., 1 (): 459.   Google Scholar

[10]

J. T. Edwards, N. J. Ford and J. A. Roberts, Bifurcations in numerical methods for Volterra integro-differential equations., Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 3255.   Google Scholar

[11]

P. P. B. Eggermont and C. Lubich, Uniform error estimates of operational quadrature methods for nonlinear convolution equations on the half-line., Math. Comp., 56 (1991), 149.   Google Scholar

[12]

S. Elaydi, An introduction to difference equations., Third edition. Undergraduate Texts in Mathematics. Springer, (2005).   Google Scholar

[13]

N. J. Ford and C. T. H. Baker, Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type., Proceedings of the Sixth International Congress on Computational and Applied Mathematics (Leuven, 66 (1996), 1.   Google Scholar

[14]

G. Gripenberg, S.-O. Londen and O. Staffans, Volterra integral and functional equations., Encyclopedia of Mathematics and its Applications, (1990).   Google Scholar

[15]

M. Gyllenberg, Nonlinear age-dependent population dynamics in continuously propagated bacterial cultures,, Math. Biosci. 62 (1982), 62 (1982).   Google Scholar

[16]

I. Győri and D.W. Reynolds, On admissibility of the resolvent of discrete Volterra equations,, J. Difference Equ. Appl. 16 (2010), 16 (2010), 1393.   Google Scholar

[17]

H. W. Hethcote and P. van den Driessche, An SIS epidemic model with variable population size and a delay., J. Math. Biol. 34 (1995), 34 (1995).   Google Scholar

[18]

V. B. Kolmanovskii, A. D. Myshkis and J.-P. Richard, Estimate of solutions for some Volterra difference equations. Lakshmikantham's legacy: a tribute on his 75th birthday,, Nonlinear Anal. 40 (2000), 40 (2000), 1.   Google Scholar

[19]

P. Linz, Analytical and numerical methods for Volterra Equations,, Philadelphia: S.I.A.M., (1985).   Google Scholar

[20]

S.-O. Londen, On a nonlinear Volterra integral equation,, J. Differential Equations 14 (1973), 14 (1973).   Google Scholar

[21]

Ch. Lubich, On the stability of linear multistep methods for Volterra convolution equations., IMA J. Numer. Anal., 3 (1983), 439.   Google Scholar

[22]

E. Messina, Y. Muroya, E. Russo, and A. Vecchio, On the stability of numerical methods for nonlinear Volterra integral equations., Discrete Dyn. Nat. Soc., (2010).   Google Scholar

[23]

E. Messina, E. Russo, and A. Vecchio, Comparing analytical and numerical solution of a nonlinear two-delay integral equations., Math. Comput. Simulation 81(5) (2011), 81 (2011), 1017.   Google Scholar

[24]

R. K. Miller, On the linearization of Volterra integral equations., J. Math. Anal. Appl., 23 (1968), 198.   Google Scholar

[25]

Y. Song and C. T. H. Baker, Perturbation theory for discrete Volterra equations., J. Difference Equ. Appl., 9 (2003), 969.   Google Scholar

[26]

P. van den Driessche, J. Watmough, A simple SIS epidemic model with a backward bifurcation., J. Math. Biol., 40 (2000), 525.   Google Scholar

[27]

A. Vecchio, Stability of Direct Quadrature methods for systems of Volterra integral equations., J. of Comput. Meth. in Sci. and Eng., 3 (2003), 71.   Google Scholar

[28]

A. Vecchio, On the resolvent kernel of Volterra discrete equations., Funct. Differ. Equ., 6 (1999), 1.   Google Scholar

show all references

References:
[1]

R. P.Agarwal and D. O'Regan, Integral and Integrodifferential Equations: Theory, Methods and Applications., Gordon and Breach Science Publishers, (2000).   Google Scholar

[2]

M. Annunziato, H. Brunner and E. Messina, Asymptotic stability of solutions to Volterra-renewal integral equations with space maps,, J. Math. Anal. Appl., 395 (2012), 766.   Google Scholar

[3]

C. T. H. Baker and M. S. Keech, Stability regions in the numerical treatment of Volterra integral equations,, SIAM J. Numer. Anal., 15 (1978), 394.   Google Scholar

[4]

F. Brauer, On a nonlinear integral equation for population growth problems,, SIAM J. Math. Anal., 6 (1975), 312.   Google Scholar

[5]

H. Brunner, Collocation methods for Volterra integral and related functional differential equations,, Cambridge Monographs on Applied and Computational Mathematics, (2004).   Google Scholar

[6]

H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations,, CWI Monographs, (1986).   Google Scholar

[7]

A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities,, Adv. in Appl. Probab., 19 (1987), 784.   Google Scholar

[8]

K. L. Cooke, An epidemic equation with immigration,, Math. Biosci., 29 (1976), 1.   Google Scholar

[9]

O. Diekmann, Limiting behaviour in an epidemic model,, Nonlinear Anal., 1 (): 459.   Google Scholar

[10]

J. T. Edwards, N. J. Ford and J. A. Roberts, Bifurcations in numerical methods for Volterra integro-differential equations., Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 3255.   Google Scholar

[11]

P. P. B. Eggermont and C. Lubich, Uniform error estimates of operational quadrature methods for nonlinear convolution equations on the half-line., Math. Comp., 56 (1991), 149.   Google Scholar

[12]

S. Elaydi, An introduction to difference equations., Third edition. Undergraduate Texts in Mathematics. Springer, (2005).   Google Scholar

[13]

N. J. Ford and C. T. H. Baker, Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type., Proceedings of the Sixth International Congress on Computational and Applied Mathematics (Leuven, 66 (1996), 1.   Google Scholar

[14]

G. Gripenberg, S.-O. Londen and O. Staffans, Volterra integral and functional equations., Encyclopedia of Mathematics and its Applications, (1990).   Google Scholar

[15]

M. Gyllenberg, Nonlinear age-dependent population dynamics in continuously propagated bacterial cultures,, Math. Biosci. 62 (1982), 62 (1982).   Google Scholar

[16]

I. Győri and D.W. Reynolds, On admissibility of the resolvent of discrete Volterra equations,, J. Difference Equ. Appl. 16 (2010), 16 (2010), 1393.   Google Scholar

[17]

H. W. Hethcote and P. van den Driessche, An SIS epidemic model with variable population size and a delay., J. Math. Biol. 34 (1995), 34 (1995).   Google Scholar

[18]

V. B. Kolmanovskii, A. D. Myshkis and J.-P. Richard, Estimate of solutions for some Volterra difference equations. Lakshmikantham's legacy: a tribute on his 75th birthday,, Nonlinear Anal. 40 (2000), 40 (2000), 1.   Google Scholar

[19]

P. Linz, Analytical and numerical methods for Volterra Equations,, Philadelphia: S.I.A.M., (1985).   Google Scholar

[20]

S.-O. Londen, On a nonlinear Volterra integral equation,, J. Differential Equations 14 (1973), 14 (1973).   Google Scholar

[21]

Ch. Lubich, On the stability of linear multistep methods for Volterra convolution equations., IMA J. Numer. Anal., 3 (1983), 439.   Google Scholar

[22]

E. Messina, Y. Muroya, E. Russo, and A. Vecchio, On the stability of numerical methods for nonlinear Volterra integral equations., Discrete Dyn. Nat. Soc., (2010).   Google Scholar

[23]

E. Messina, E. Russo, and A. Vecchio, Comparing analytical and numerical solution of a nonlinear two-delay integral equations., Math. Comput. Simulation 81(5) (2011), 81 (2011), 1017.   Google Scholar

[24]

R. K. Miller, On the linearization of Volterra integral equations., J. Math. Anal. Appl., 23 (1968), 198.   Google Scholar

[25]

Y. Song and C. T. H. Baker, Perturbation theory for discrete Volterra equations., J. Difference Equ. Appl., 9 (2003), 969.   Google Scholar

[26]

P. van den Driessche, J. Watmough, A simple SIS epidemic model with a backward bifurcation., J. Math. Biol., 40 (2000), 525.   Google Scholar

[27]

A. Vecchio, Stability of Direct Quadrature methods for systems of Volterra integral equations., J. of Comput. Meth. in Sci. and Eng., 3 (2003), 71.   Google Scholar

[28]

A. Vecchio, On the resolvent kernel of Volterra discrete equations., Funct. Differ. Equ., 6 (1999), 1.   Google Scholar

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[3]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231

[4]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[7]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[10]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[11]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[12]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[13]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[14]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[15]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[16]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[17]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[18]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[19]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[20]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

 Impact Factor: 

Metrics

  • PDF downloads (109)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]