2015, 2015(special): 878-900. doi: 10.3934/proc.2015.0878

Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition

1. 

Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, 520-2194

2. 

Graduate School of Science Department of Mathematical and Life Sciences, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan

3. 

Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, Shiga 520-2194

Received  September 2014 Revised  January 2015 Published  November 2015

This paper deals with a derivative nonlinear Schrödinger equation under periodic boundary conditions. Taking advantage of the symmetries of the equation, we search for the traveling wave solutions. The problem is reduced to second order nonlinear nonlocal differential equations. By solving the equations, explicit formulas for the traveling waves are obtained. These formulas allow us to visualize the global structure of the traveling waves with various speeds and profiles.
Citation: Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878
References:
[1]

J. V. Armitage and W. F. Eberlein, "Elliptic Functions ",, Cambridge University Press, (2006).   Google Scholar

[2]

S. Herr, On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition,, Int. Math. Res. Not., (2006).   Google Scholar

[3]

H.Ikeda, K.Kondo, H.Okamoto and S.Yotsutani, On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows,, Commun. Pure Appl. Anal., 2 (2003), 381.   Google Scholar

[4]

K. Imamura, Stability and bifurcation of periodic traveling waves in a derivative non-linear Schrödingier equation,, Hiroshima Math. J., 40 (2010).   Google Scholar

[5]

S.Kosugi, Y.Morita and S.Yotsutani, A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions,, Commun. Pure Appl. Anal., 4 (2005), 665.   Google Scholar

[6]

Y.Lou, W-M.Ni and S.Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion. Partial differential equations and applications,, Discrete Contin. Dyn. Syst., 10 (2004), 1.   Google Scholar

[7]

M.Murai, W. Matsumoto and S.Yotsutani, Representation formula for the plane closed elastic curves,, Discrete Contin. Dyn. Syst. Supplement 2013, (2013), 565.   Google Scholar

show all references

References:
[1]

J. V. Armitage and W. F. Eberlein, "Elliptic Functions ",, Cambridge University Press, (2006).   Google Scholar

[2]

S. Herr, On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition,, Int. Math. Res. Not., (2006).   Google Scholar

[3]

H.Ikeda, K.Kondo, H.Okamoto and S.Yotsutani, On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows,, Commun. Pure Appl. Anal., 2 (2003), 381.   Google Scholar

[4]

K. Imamura, Stability and bifurcation of periodic traveling waves in a derivative non-linear Schrödingier equation,, Hiroshima Math. J., 40 (2010).   Google Scholar

[5]

S.Kosugi, Y.Morita and S.Yotsutani, A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions,, Commun. Pure Appl. Anal., 4 (2005), 665.   Google Scholar

[6]

Y.Lou, W-M.Ni and S.Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion. Partial differential equations and applications,, Discrete Contin. Dyn. Syst., 10 (2004), 1.   Google Scholar

[7]

M.Murai, W. Matsumoto and S.Yotsutani, Representation formula for the plane closed elastic curves,, Discrete Contin. Dyn. Syst. Supplement 2013, (2013), 565.   Google Scholar

[1]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[4]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[8]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[9]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[12]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[13]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[14]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[15]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[18]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[19]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[20]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

 Impact Factor: 

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (0)

[Back to Top]