• Previous Article
    Oscillation results for second order nonlinear neutral differential equations with delay
  • PROC Home
  • This Issue
  • Next Article
    Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition
2015, 2015(special): 901-905. doi: 10.3934/proc.2015.0901

Remarks on a dispersive equation in de Sitter spacetime

1. 

Faculty of Science, Yamagata University, Kojirakawa-machi 1-4-12, Yamagata 990-8560

Received  September 2014 Revised  February 2015 Published  November 2015

Some nonlinear Schrödinger equations are derived from the nonrelativistic limit of nonlinear Klein-Gordon equations in de Sitter spacetime. Time local solutions for the Cauchy problem are considered in Sobolev spaces for power type nonlinear terms. The roles of spatial expansion and contraction on the problem are studied.
Citation: Makoto Nakamura. Remarks on a dispersive equation in de Sitter spacetime. Conference Publications, 2015, 2015 (special) : 901-905. doi: 10.3934/proc.2015.0901
References:
[1]

V. Banica, The nonlinear Schrödinger equation on hyperbolic space,, Comm. Partial Differential Equations, 32 (2007), 10.   Google Scholar

[2]

D. Baskin, A parametrix for the fundamental solution of the Klein-Gordon equation on asymptotically de Sitter spaces,, J. Funct. Anal., 259 (2010), 1673.   Google Scholar

[3]

T. Cazenave, "Semilinear Schrödinger equations,'', Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[4]

G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey,, J. Fourier Anal. Appl., 3 (1997), 207.   Google Scholar

[5]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation,, J. Funct. Anal., 133 (1995), 50.   Google Scholar

[6]

A. D. Ionescu, B. Pausader and G. Staffilani, On the global well-posedness of energy-critical Schrödinger equations in curved spaces,, Anal. PDE, 5 (2012), 705.   Google Scholar

[7]

J. F. Lam, B. Lippmann and F. Tappert, Self-trapped laser beams in plasma,, Phys. Fluids, 20 (1977), 1176.   Google Scholar

[8]

M. Nakamura, The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime,, J. Math. Anal. Appl., 410 (2014), 445.   Google Scholar

[9]

M. Nakamura and T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces,, Rev. Math. Phys., 9 (1997), 397.   Google Scholar

[10]

T. Tao, "Nonlinear dispersive equations. Local and global analysis,", CBMS Regional Conference Series in Mathematics, (2006).   Google Scholar

[11]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups,, Funkcial. Ekvac., 30 (1987), 115.   Google Scholar

[12]

Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations,, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 186.   Google Scholar

show all references

References:
[1]

V. Banica, The nonlinear Schrödinger equation on hyperbolic space,, Comm. Partial Differential Equations, 32 (2007), 10.   Google Scholar

[2]

D. Baskin, A parametrix for the fundamental solution of the Klein-Gordon equation on asymptotically de Sitter spaces,, J. Funct. Anal., 259 (2010), 1673.   Google Scholar

[3]

T. Cazenave, "Semilinear Schrödinger equations,'', Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[4]

G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey,, J. Fourier Anal. Appl., 3 (1997), 207.   Google Scholar

[5]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation,, J. Funct. Anal., 133 (1995), 50.   Google Scholar

[6]

A. D. Ionescu, B. Pausader and G. Staffilani, On the global well-posedness of energy-critical Schrödinger equations in curved spaces,, Anal. PDE, 5 (2012), 705.   Google Scholar

[7]

J. F. Lam, B. Lippmann and F. Tappert, Self-trapped laser beams in plasma,, Phys. Fluids, 20 (1977), 1176.   Google Scholar

[8]

M. Nakamura, The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime,, J. Math. Anal. Appl., 410 (2014), 445.   Google Scholar

[9]

M. Nakamura and T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces,, Rev. Math. Phys., 9 (1997), 397.   Google Scholar

[10]

T. Tao, "Nonlinear dispersive equations. Local and global analysis,", CBMS Regional Conference Series in Mathematics, (2006).   Google Scholar

[11]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups,, Funkcial. Ekvac., 30 (1987), 115.   Google Scholar

[12]

Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations,, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 186.   Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[19]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[20]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

 Impact Factor: 

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]