• Previous Article
    Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition
  • PROC Home
  • This Issue
  • Next Article
    Oscillation results for second order nonlinear neutral differential equations with delay
2015, 2015(special): 901-905. doi: 10.3934/proc.2015.0901

Remarks on a dispersive equation in de Sitter spacetime

1. 

Faculty of Science, Yamagata University, Kojirakawa-machi 1-4-12, Yamagata 990-8560

Received  September 2014 Revised  February 2015 Published  November 2015

Some nonlinear Schrödinger equations are derived from the nonrelativistic limit of nonlinear Klein-Gordon equations in de Sitter spacetime. Time local solutions for the Cauchy problem are considered in Sobolev spaces for power type nonlinear terms. The roles of spatial expansion and contraction on the problem are studied.
Citation: Makoto Nakamura. Remarks on a dispersive equation in de Sitter spacetime. Conference Publications, 2015, 2015 (special) : 901-905. doi: 10.3934/proc.2015.0901
References:
[1]

V. Banica, The nonlinear Schrödinger equation on hyperbolic space,, Comm. Partial Differential Equations, 32 (2007), 10. Google Scholar

[2]

D. Baskin, A parametrix for the fundamental solution of the Klein-Gordon equation on asymptotically de Sitter spaces,, J. Funct. Anal., 259 (2010), 1673. Google Scholar

[3]

T. Cazenave, "Semilinear Schrödinger equations,'', Courant Lecture Notes in Mathematics, (2003). Google Scholar

[4]

G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey,, J. Fourier Anal. Appl., 3 (1997), 207. Google Scholar

[5]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation,, J. Funct. Anal., 133 (1995), 50. Google Scholar

[6]

A. D. Ionescu, B. Pausader and G. Staffilani, On the global well-posedness of energy-critical Schrödinger equations in curved spaces,, Anal. PDE, 5 (2012), 705. Google Scholar

[7]

J. F. Lam, B. Lippmann and F. Tappert, Self-trapped laser beams in plasma,, Phys. Fluids, 20 (1977), 1176. Google Scholar

[8]

M. Nakamura, The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime,, J. Math. Anal. Appl., 410 (2014), 445. Google Scholar

[9]

M. Nakamura and T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces,, Rev. Math. Phys., 9 (1997), 397. Google Scholar

[10]

T. Tao, "Nonlinear dispersive equations. Local and global analysis,", CBMS Regional Conference Series in Mathematics, (2006). Google Scholar

[11]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups,, Funkcial. Ekvac., 30 (1987), 115. Google Scholar

[12]

Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations,, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 186. Google Scholar

show all references

References:
[1]

V. Banica, The nonlinear Schrödinger equation on hyperbolic space,, Comm. Partial Differential Equations, 32 (2007), 10. Google Scholar

[2]

D. Baskin, A parametrix for the fundamental solution of the Klein-Gordon equation on asymptotically de Sitter spaces,, J. Funct. Anal., 259 (2010), 1673. Google Scholar

[3]

T. Cazenave, "Semilinear Schrödinger equations,'', Courant Lecture Notes in Mathematics, (2003). Google Scholar

[4]

G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey,, J. Fourier Anal. Appl., 3 (1997), 207. Google Scholar

[5]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation,, J. Funct. Anal., 133 (1995), 50. Google Scholar

[6]

A. D. Ionescu, B. Pausader and G. Staffilani, On the global well-posedness of energy-critical Schrödinger equations in curved spaces,, Anal. PDE, 5 (2012), 705. Google Scholar

[7]

J. F. Lam, B. Lippmann and F. Tappert, Self-trapped laser beams in plasma,, Phys. Fluids, 20 (1977), 1176. Google Scholar

[8]

M. Nakamura, The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime,, J. Math. Anal. Appl., 410 (2014), 445. Google Scholar

[9]

M. Nakamura and T. Ozawa, Low energy scattering for nonlinear Schrödinger equations in fractional order Sobolev spaces,, Rev. Math. Phys., 9 (1997), 397. Google Scholar

[10]

T. Tao, "Nonlinear dispersive equations. Local and global analysis,", CBMS Regional Conference Series in Mathematics, (2006). Google Scholar

[11]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups,, Funkcial. Ekvac., 30 (1987), 115. Google Scholar

[12]

Y. Tsutsumi and K. Yajima, The asymptotic behavior of nonlinear Schrödinger equations,, Bull. Amer. Math. Soc. (N.S.), 11 (1984), 186. Google Scholar

[1]

Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679

[2]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[3]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[4]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[5]

Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131

[6]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[7]

Shubin Wang, Guowang Chen. Cauchy problem for the nonlinear Schrödinger-IMBq equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 203-214. doi: 10.3934/dcdsb.2006.6.203

[8]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[9]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[10]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[11]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[12]

Yang Han. On the cauchy problem for the coupled Klein Gordon Schrödinger system with rough data. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 233-242. doi: 10.3934/dcds.2005.12.233

[13]

Carlos Kenig, Tobias Lamm, Daniel Pollack, Gigliola Staffilani, Tatiana Toro. The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 389-439. doi: 10.3934/dcds.2010.27.389

[14]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[15]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[16]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[17]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[18]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[19]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[20]

Van Duong Dinh. On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1127-1143. doi: 10.3934/dcds.2018047

 Impact Factor: 

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]