2015, 2015(special): 906-912. doi: 10.3934/proc.2015.0906

Oscillation results for second order nonlinear neutral differential equations with delay

1. 

School of Mathematics and Statistics, University of Hyderabad, Hyderabad, Telengana- 500 046, India, India

Received  September 2014 Revised  April 2015 Published  November 2015

In this paper, oscillatory and asymptotic behavior of solutions of a class of nonlinear second order neutral differential equations with positive and negative coefficients of the form \begin{eqnarray*} (r_{1}(t)(x(t)+p_{1}(t)x(\tau(t)))^{\prime})^{\prime}+r_{2}(t)(x(t)+p_{2}(t)x(\sigma(t)))^{\prime} \\+p(t)G(x(\alpha(t)))-q(t)H(x(\beta(t)))=0 \end{eqnarray*} and \begin{eqnarray*} (r_{1}(t)(x(t)+p_{1}(t)x(\tau(t)))^{\prime})^{\prime}+r_{2}(t)(x(t)+p_{2}(t)x(\sigma(t)))^{\prime} \\+p(t)G(x(\alpha(t)))-q(t)H(x(\beta(t)))=f(t) \end{eqnarray*} are studied for various ranges of $p_{1}(t), p_{2}(t)$.
Citation: Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906
References:
[1]

I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equation with Application,, Claredon Press, (1991).   Google Scholar

[2]

B. Karpuz, J. V. Manjolvić, Ö. Öcalan. Y. Shoukaku, Oscillation criteria for a class of second-order neutral delay differential equations,, Appl. Math. Comp., 210 (2009), 303.   Google Scholar

[3]

X. Lin, Oscillation of second order nonlinear neutral differential equations,, J. Math. Anal. Appl., 309 (2005), 442.   Google Scholar

[4]

W. Shi, P. Wang, Oscillation criteria of a class of second order neutral functional differential equations, Appl. Math. Comput., 146 (2003), 211.   Google Scholar

[5]

E. M. E. Zayed and M. A. El-Moneam, Some oscillation criteria for second order nonlinear functional ordinary differential equations,, Acta Math. Sci., 27B(3) (2007), 602.   Google Scholar

show all references

References:
[1]

I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equation with Application,, Claredon Press, (1991).   Google Scholar

[2]

B. Karpuz, J. V. Manjolvić, Ö. Öcalan. Y. Shoukaku, Oscillation criteria for a class of second-order neutral delay differential equations,, Appl. Math. Comp., 210 (2009), 303.   Google Scholar

[3]

X. Lin, Oscillation of second order nonlinear neutral differential equations,, J. Math. Anal. Appl., 309 (2005), 442.   Google Scholar

[4]

W. Shi, P. Wang, Oscillation criteria of a class of second order neutral functional differential equations, Appl. Math. Comput., 146 (2003), 211.   Google Scholar

[5]

E. M. E. Zayed and M. A. El-Moneam, Some oscillation criteria for second order nonlinear functional ordinary differential equations,, Acta Math. Sci., 27B(3) (2007), 602.   Google Scholar

[1]

Abdullah Özbekler, A. Zafer. Second order oscillation of mixed nonlinear dynamic equations with several positive and negative coefficients. Conference Publications, 2011, 2011 (Special) : 1167-1175. doi: 10.3934/proc.2011.2011.1167

[2]

T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167

[3]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[4]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[5]

R.S. Dahiya, A. Zafer. Oscillation theorems of higher order neutral type differential equations. Conference Publications, 1998, 1998 (Special) : 203-219. doi: 10.3934/proc.1998.1998.203

[6]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[7]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[8]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[9]

Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340

[10]

Josef Diblík, Zdeněk Svoboda. Existence of strictly decreasing positive solutions of linear differential equations of neutral type. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 67-84. doi: 10.3934/dcdss.2020004

[11]

Genni Fragnelli, Dimitri Mugnai. Stability of solutions for nonlinear wave equations with a positive--negative damping. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 615-622. doi: 10.3934/dcdss.2011.4.615

[12]

Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033

[13]

R.H. Fabiano, J. Turi. Making the numerical abscissa negative for a class of neutral equations. Conference Publications, 2003, 2003 (Special) : 256-262. doi: 10.3934/proc.2003.2003.256

[14]

Min Zou, An-Ping Liu, Zhimin Zhang. Oscillation theorems for impulsive parabolic differential system of neutral type. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2351-2363. doi: 10.3934/dcdsb.2017103

[15]

Jean-François Couchouron, Mikhail Kamenskii, Paolo Nistri. An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1845-1859. doi: 10.3934/cpaa.2013.12.1845

[16]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[17]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[18]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

[19]

Junhao Hu, Chenggui Yuan. Strong convergence of neutral stochastic functional differential equations with two time-scales. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5831-5848. doi: 10.3934/dcdsb.2019108

[20]

Mahmoud Abouagwa, Ji Li. G-neutral stochastic differential equations with variable delay and non-Lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019241

 Impact Factor: 

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]