-
Previous Article
Optimal design of sensors for a damped wave equation
- PROC Home
- This Issue
-
Next Article
An in-host model of HIV incorporating latent infection and viral mutation
A functional-analytic technique for the study of analytic solutions of PDEs
1. | Department of Civil Engineering, University of Patras, 26500 Patras, Greece |
2. | Department of Mathematics, University of Patras, 26500 Patras, Greece |
References:
[1] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47. Google Scholar |
[2] |
G. Caciotta and F. Nicoló, Local and global analytic solutions for a class of characteristic problems of the Einstein vacuum equations in the "double null foliation gauge",, Ann. Henri Poincare, 13 (2012), 1167. Google Scholar |
[3] |
G. M. Coclite, F. Gargano and V. Sciacca, Analytic solutions and singularity formation for the Peakon $b$-family equations,, Acta Appl. Math., 122 (2012), 419. Google Scholar |
[4] |
C. J. Earle and R. S. Hamilton, A fixed point theorem for holomorphic mappings, in Global Analysis (Proc. Sympos. Pure Math., (1970), 61. Google Scholar |
[5] |
L. C. Evans, Partial differential equations,, $2^{nd}$ edition, (2010). Google Scholar |
[6] |
N. Hayashi and K. Kato, Global existence of small analytic solutions to Schrödinger equations with quadratic nonlinearity,, Comm. Partial Differential Equations, 22 (1997), 773. Google Scholar |
[7] |
A. A. Himonas and G. Petronilho, Analytic well-posedness of periodic gKdV,, J. Differential Equations, 253 (2012), 3101. Google Scholar |
[8] |
E. K. Ifantis, Solution of the Schrödinger equation in the Hardy-Lebesgue space,, J. Mathematical Phys., 12 (1971), 1961. Google Scholar |
[9] |
E. K. Ifantis, Analytic solutions for nonlinear differential equations,, J. Math. Anal. Appl., 124 (1987), 339. Google Scholar |
[10] |
E. K. Ifantis, Global analytic solutions of the radial nonlinear wave equation,, J. Math. Anal. Appl., 124 (1987), 381. Google Scholar |
[11] |
J. Kajiwara, Holomorphic solutions of a partial differential equation of mixed type,, Math. Balkanica, 2 (1972), 76. Google Scholar |
[12] |
T. Kusano and S. Oharu, Bounded entire solutions of second order semilinear elliptic equations with application to a parabolic initial value problem,, Indiana Univ. Math. J., 34 (1985), 85. Google Scholar |
[13] |
E. N. Petropoulou and P. D. Siafarikas, Analytic solutions of some non-linear ordinary differential equations,, Dynam. Systems Appl. 13 (2004), 13 (2004), 283. Google Scholar |
[14] |
E. N. Petropoulou and P. D. Siafarikas, Polynomial solutions of linear partial differential equations,, Commun. Pure Appl. Anal. 8 (2009), 8 (2009), 1053. Google Scholar |
[15] |
E. N. Petropoulou, P. D. Siafarikas and E. E. Tzirtzilakis, A "discretization" technique for the solution of ODEs,, J. Math. Anal. Appl. 331 (2007), 331 (2007), 279. Google Scholar |
[16] |
E. N. Petropoulou, P. D. Siafarikas and E. E. Tzirtzilakis, A "discretization" technique for the solution of ODEs II,, Numer. Funct. Anal. Optim. 30 (2009), 30 (2009), 613. Google Scholar |
[17] |
E. N. Petropoulou and E. E. Tzirtzilakis, On the logistic equation in the complex plane,, Numer. Funct. Anal. Optim. 34 (2013), 34 (2013), 770. Google Scholar |
[18] |
I. G. Petrovsky, Lecture on partial differential equations., Translated from the Russian by A. Shenitzer, (1957). Google Scholar |
[19] |
A. Vourdas, Analytic representations in the unit disc and applications to phase states and squeezing,, Phys. Rev. A 45 (1992), 45 (1992), 1943. Google Scholar |
[20] |
G. Zampieri, A sufficient condition for existence of real analytic solutions of P.D.E. with constant coefficients, in open sets of $\mathbbR^{2}$,, Rend. Sem. Mat. Univ. Padova 63 (1980), 63 (1980), 83. Google Scholar |
[21] |
G. Zampieri, Analytic solutions of P.D.E.'s., Ann. Univ. Ferrara-Sez. VII-Sc. Mat. XLV (1999), XLV (1999), 365. Google Scholar |
show all references
References:
[1] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47. Google Scholar |
[2] |
G. Caciotta and F. Nicoló, Local and global analytic solutions for a class of characteristic problems of the Einstein vacuum equations in the "double null foliation gauge",, Ann. Henri Poincare, 13 (2012), 1167. Google Scholar |
[3] |
G. M. Coclite, F. Gargano and V. Sciacca, Analytic solutions and singularity formation for the Peakon $b$-family equations,, Acta Appl. Math., 122 (2012), 419. Google Scholar |
[4] |
C. J. Earle and R. S. Hamilton, A fixed point theorem for holomorphic mappings, in Global Analysis (Proc. Sympos. Pure Math., (1970), 61. Google Scholar |
[5] |
L. C. Evans, Partial differential equations,, $2^{nd}$ edition, (2010). Google Scholar |
[6] |
N. Hayashi and K. Kato, Global existence of small analytic solutions to Schrödinger equations with quadratic nonlinearity,, Comm. Partial Differential Equations, 22 (1997), 773. Google Scholar |
[7] |
A. A. Himonas and G. Petronilho, Analytic well-posedness of periodic gKdV,, J. Differential Equations, 253 (2012), 3101. Google Scholar |
[8] |
E. K. Ifantis, Solution of the Schrödinger equation in the Hardy-Lebesgue space,, J. Mathematical Phys., 12 (1971), 1961. Google Scholar |
[9] |
E. K. Ifantis, Analytic solutions for nonlinear differential equations,, J. Math. Anal. Appl., 124 (1987), 339. Google Scholar |
[10] |
E. K. Ifantis, Global analytic solutions of the radial nonlinear wave equation,, J. Math. Anal. Appl., 124 (1987), 381. Google Scholar |
[11] |
J. Kajiwara, Holomorphic solutions of a partial differential equation of mixed type,, Math. Balkanica, 2 (1972), 76. Google Scholar |
[12] |
T. Kusano and S. Oharu, Bounded entire solutions of second order semilinear elliptic equations with application to a parabolic initial value problem,, Indiana Univ. Math. J., 34 (1985), 85. Google Scholar |
[13] |
E. N. Petropoulou and P. D. Siafarikas, Analytic solutions of some non-linear ordinary differential equations,, Dynam. Systems Appl. 13 (2004), 13 (2004), 283. Google Scholar |
[14] |
E. N. Petropoulou and P. D. Siafarikas, Polynomial solutions of linear partial differential equations,, Commun. Pure Appl. Anal. 8 (2009), 8 (2009), 1053. Google Scholar |
[15] |
E. N. Petropoulou, P. D. Siafarikas and E. E. Tzirtzilakis, A "discretization" technique for the solution of ODEs,, J. Math. Anal. Appl. 331 (2007), 331 (2007), 279. Google Scholar |
[16] |
E. N. Petropoulou, P. D. Siafarikas and E. E. Tzirtzilakis, A "discretization" technique for the solution of ODEs II,, Numer. Funct. Anal. Optim. 30 (2009), 30 (2009), 613. Google Scholar |
[17] |
E. N. Petropoulou and E. E. Tzirtzilakis, On the logistic equation in the complex plane,, Numer. Funct. Anal. Optim. 34 (2013), 34 (2013), 770. Google Scholar |
[18] |
I. G. Petrovsky, Lecture on partial differential equations., Translated from the Russian by A. Shenitzer, (1957). Google Scholar |
[19] |
A. Vourdas, Analytic representations in the unit disc and applications to phase states and squeezing,, Phys. Rev. A 45 (1992), 45 (1992), 1943. Google Scholar |
[20] |
G. Zampieri, A sufficient condition for existence of real analytic solutions of P.D.E. with constant coefficients, in open sets of $\mathbbR^{2}$,, Rend. Sem. Mat. Univ. Padova 63 (1980), 63 (1980), 83. Google Scholar |
[21] |
G. Zampieri, Analytic solutions of P.D.E.'s., Ann. Univ. Ferrara-Sez. VII-Sc. Mat. XLV (1999), XLV (1999), 365. Google Scholar |
[1] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[2] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
[3] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[4] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[5] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[6] |
Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152 |
[7] |
Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081 |
[8] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[9] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[10] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[11] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[12] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[13] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[14] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[15] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[16] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[17] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[18] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[19] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[20] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]