-
Previous Article
Approximation and model order reduction for second order systems with Levy-noise
- PROC Home
- This Issue
-
Next Article
A functional-analytic technique for the study of analytic solutions of PDEs
Optimal design of sensors for a damped wave equation
1. | CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris |
2. | Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, Institut Universitaire de France, F-75005, Paris |
References:
[1] |
G. Allaire, S. Aubry and F. Jouve, Eigenfrequency optimization in optimal design,, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3565. Google Scholar |
[2] |
A. Armaoua and M. Demetriou, Optimal actuator/sensor placement for linear parabolic PDEs using spatial $H^2$ norm,, Chemical Engineering Science, 61 (2006), 7351. Google Scholar |
[3] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. Google Scholar |
[4] |
J.C. Bellido and A. Donoso, An optimal design problem in wave propagation,, J. Optim. Theory Appl., 134 (2007), 339. Google Scholar |
[5] |
N. Burq, Large-time dynamics for the one-dimensional Schrödinger equation,, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 227. Google Scholar |
[6] |
N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation],, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749. Google Scholar |
[7] |
N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,, Invent. Math., 173 (2008), 449. Google Scholar |
[8] |
N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1. Google Scholar |
[9] |
P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string,, Syst. Cont. Letters, 48 (2003), 199. Google Scholar |
[10] |
P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators,, SIAM J. Control Optim. \textbf{44} {2005}, 44 (): 349. Google Scholar |
[11] |
K. Morris, Linear-quadratic optimal actuator location,, IEEE Trans. Automat. Control, 56 (2011), 113. Google Scholar |
[12] |
R.E.A.C. Paley and A. Zygmund, On some series of functions (1) (2) (3),, Proc. Camb. Phil. Soc., 26 (1930), 337. Google Scholar |
[13] |
Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data,, Discrete Cont. Dynam. Syst., 35 (2015), 6133. Google Scholar |
[14] |
Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097. Google Scholar |
[15] |
Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514. Google Scholar |
[16] |
Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the multi-dimensional wave and Schr\"odinger equations in quantum ergodic domains,, to appear in J. Eur. Math. Soc., (2015). Google Scholar |
[17] |
Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data,, Arch. Ration. Mech. Anal., 216 (2015), 921. Google Scholar |
[18] |
O. Sigmund and J.S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 361 (2003), 1001. Google Scholar |
[19] |
M. Tucsnak and G. Weiss, Observation and control for operator semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009). Google Scholar |
[20] |
D. Ucinski and M. Patan, Sensor network design fo the estimation of spatially distributed processes,, Int. J. Appl. Math. Comput. Sci., 20 (2010), 459. Google Scholar |
[21] |
A. Vande Wouwer, N. Point, S. Porteman, M. Remy, An approach to the selection of optimal sensor locations in distributed parameter systems,, J. Process Control, 10 (2000), 291. Google Scholar |
show all references
References:
[1] |
G. Allaire, S. Aubry and F. Jouve, Eigenfrequency optimization in optimal design,, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3565. Google Scholar |
[2] |
A. Armaoua and M. Demetriou, Optimal actuator/sensor placement for linear parabolic PDEs using spatial $H^2$ norm,, Chemical Engineering Science, 61 (2006), 7351. Google Scholar |
[3] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. Google Scholar |
[4] |
J.C. Bellido and A. Donoso, An optimal design problem in wave propagation,, J. Optim. Theory Appl., 134 (2007), 339. Google Scholar |
[5] |
N. Burq, Large-time dynamics for the one-dimensional Schrödinger equation,, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 227. Google Scholar |
[6] |
N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation],, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749. Google Scholar |
[7] |
N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,, Invent. Math., 173 (2008), 449. Google Scholar |
[8] |
N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1. Google Scholar |
[9] |
P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string,, Syst. Cont. Letters, 48 (2003), 199. Google Scholar |
[10] |
P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators,, SIAM J. Control Optim. \textbf{44} {2005}, 44 (): 349. Google Scholar |
[11] |
K. Morris, Linear-quadratic optimal actuator location,, IEEE Trans. Automat. Control, 56 (2011), 113. Google Scholar |
[12] |
R.E.A.C. Paley and A. Zygmund, On some series of functions (1) (2) (3),, Proc. Camb. Phil. Soc., 26 (1930), 337. Google Scholar |
[13] |
Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data,, Discrete Cont. Dynam. Syst., 35 (2015), 6133. Google Scholar |
[14] |
Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097. Google Scholar |
[15] |
Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514. Google Scholar |
[16] |
Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the multi-dimensional wave and Schr\"odinger equations in quantum ergodic domains,, to appear in J. Eur. Math. Soc., (2015). Google Scholar |
[17] |
Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data,, Arch. Ration. Mech. Anal., 216 (2015), 921. Google Scholar |
[18] |
O. Sigmund and J.S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 361 (2003), 1001. Google Scholar |
[19] |
M. Tucsnak and G. Weiss, Observation and control for operator semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009). Google Scholar |
[20] |
D. Ucinski and M. Patan, Sensor network design fo the estimation of spatially distributed processes,, Int. J. Appl. Math. Comput. Sci., 20 (2010), 459. Google Scholar |
[21] |
A. Vande Wouwer, N. Point, S. Porteman, M. Remy, An approach to the selection of optimal sensor locations in distributed parameter systems,, J. Process Control, 10 (2000), 291. Google Scholar |
[1] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[2] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[3] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[4] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[5] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006 |
[6] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[7] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[8] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[9] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020031 |
[10] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[11] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[12] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[13] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[14] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[15] |
Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020459 |
[16] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[17] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[18] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[19] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[20] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]