2015, 2015(special): 936-944. doi: 10.3934/proc.2015.0936

Optimal design of sensors for a damped wave equation

1. 

CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris

2. 

Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, Institut Universitaire de France, F-75005, Paris

Received  September 2014 Revised  January 2015 Published  November 2015

In this paper we model and solve the problem of shaping and placing in an optimal way sensors for a wave equation with constant damping in a bounded open connected subset $\Omega$ of $\mathbb{R}^n$. Sensors are modeled by subdomains of $\Omega$ of a given measure $L|\Omega|$, with $0 < L < 1$. We prove that, if $L$ is close enough to $1$, then the optimal design problem has a unique solution, which is characterized by a finite number of low frequency modes. In particular the maximizing sequence built from spectral approximations is stationary.
Citation: Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936
References:
[1]

G. Allaire, S. Aubry and F. Jouve, Eigenfrequency optimization in optimal design,, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3565.   Google Scholar

[2]

A. Armaoua and M. Demetriou, Optimal actuator/sensor placement for linear parabolic PDEs using spatial $H^2$ norm,, Chemical Engineering Science, 61 (2006), 7351.   Google Scholar

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.   Google Scholar

[4]

J.C. Bellido and A. Donoso, An optimal design problem in wave propagation,, J. Optim. Theory Appl., 134 (2007), 339.   Google Scholar

[5]

N. Burq, Large-time dynamics for the one-dimensional Schrödinger equation,, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 227.   Google Scholar

[6]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation],, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749.   Google Scholar

[7]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,, Invent. Math., 173 (2008), 449.   Google Scholar

[8]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1.   Google Scholar

[9]

P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string,, Syst. Cont. Letters, 48 (2003), 199.   Google Scholar

[10]

P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators,, SIAM J. Control Optim. \textbf{44} {2005}, 44 (): 349.   Google Scholar

[11]

K. Morris, Linear-quadratic optimal actuator location,, IEEE Trans. Automat. Control, 56 (2011), 113.   Google Scholar

[12]

R.E.A.C. Paley and A. Zygmund, On some series of functions (1) (2) (3),, Proc. Camb. Phil. Soc., 26 (1930), 337.   Google Scholar

[13]

Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data,, Discrete Cont. Dynam. Syst., 35 (2015), 6133.   Google Scholar

[14]

Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097.   Google Scholar

[15]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514.   Google Scholar

[16]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the multi-dimensional wave and Schr\"odinger equations in quantum ergodic domains,, to appear in J. Eur. Math. Soc., (2015).   Google Scholar

[17]

Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data,, Arch. Ration. Mech. Anal., 216 (2015), 921.   Google Scholar

[18]

O. Sigmund and J.S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 361 (2003), 1001.   Google Scholar

[19]

M. Tucsnak and G. Weiss, Observation and control for operator semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009).   Google Scholar

[20]

D. Ucinski and M. Patan, Sensor network design fo the estimation of spatially distributed processes,, Int. J. Appl. Math. Comput. Sci., 20 (2010), 459.   Google Scholar

[21]

A. Vande Wouwer, N. Point, S. Porteman, M. Remy, An approach to the selection of optimal sensor locations in distributed parameter systems,, J. Process Control, 10 (2000), 291.   Google Scholar

show all references

References:
[1]

G. Allaire, S. Aubry and F. Jouve, Eigenfrequency optimization in optimal design,, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3565.   Google Scholar

[2]

A. Armaoua and M. Demetriou, Optimal actuator/sensor placement for linear parabolic PDEs using spatial $H^2$ norm,, Chemical Engineering Science, 61 (2006), 7351.   Google Scholar

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.   Google Scholar

[4]

J.C. Bellido and A. Donoso, An optimal design problem in wave propagation,, J. Optim. Theory Appl., 134 (2007), 339.   Google Scholar

[5]

N. Burq, Large-time dynamics for the one-dimensional Schrödinger equation,, Proc. Roy. Soc. Edinburgh Sect. A., 141 (2011), 227.   Google Scholar

[6]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation],, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749.   Google Scholar

[7]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations. I. Local theory,, Invent. Math., 173 (2008), 449.   Google Scholar

[8]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1.   Google Scholar

[9]

P. Hébrard and A. Henrot, Optimal shape and position of the actuators for the stabilization of a string,, Syst. Cont. Letters, 48 (2003), 199.   Google Scholar

[10]

P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators,, SIAM J. Control Optim. \textbf{44} {2005}, 44 (): 349.   Google Scholar

[11]

K. Morris, Linear-quadratic optimal actuator location,, IEEE Trans. Automat. Control, 56 (2011), 113.   Google Scholar

[12]

R.E.A.C. Paley and A. Zygmund, On some series of functions (1) (2) (3),, Proc. Camb. Phil. Soc., 26 (1930), 337.   Google Scholar

[13]

Y. Privat, E. Trélat and E. Zuazua, Complexity and regularity of maximal energy domains for the wave equation with fixed initial data,, Discrete Cont. Dynam. Syst., 35 (2015), 6133.   Google Scholar

[14]

Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097.   Google Scholar

[15]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514.   Google Scholar

[16]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the multi-dimensional wave and Schr\"odinger equations in quantum ergodic domains,, to appear in J. Eur. Math. Soc., (2015).   Google Scholar

[17]

Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data,, Arch. Ration. Mech. Anal., 216 (2015), 921.   Google Scholar

[18]

O. Sigmund and J.S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 361 (2003), 1001.   Google Scholar

[19]

M. Tucsnak and G. Weiss, Observation and control for operator semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009).   Google Scholar

[20]

D. Ucinski and M. Patan, Sensor network design fo the estimation of spatially distributed processes,, Int. J. Appl. Math. Comput. Sci., 20 (2010), 459.   Google Scholar

[21]

A. Vande Wouwer, N. Point, S. Porteman, M. Remy, An approach to the selection of optimal sensor locations in distributed parameter systems,, J. Process Control, 10 (2000), 291.   Google Scholar

[1]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[2]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[3]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006

[6]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[7]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[8]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[9]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[12]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[13]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[14]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[15]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[18]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[19]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[20]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

 Impact Factor: 

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]