2015, 2015(special): 954-964. doi: 10.3934/proc.2015.0954

Infinitely many multi-pulses near a bifocal cycle

1. 

Centro de Matemática da Universidade do Porto and Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto

Received  August 2014 Revised  April 2015 Published  November 2015

The entire dynamics in a neighbourhood of a reversible heteroclinic cycle involving a bifocus is far from being understood. In this article, using the well known theory of reversing symmetries, we prove that there are infinitely many pulses near a cycle involving two symmetric equilibria, a real saddle and a bifocus, giving rise to a complex network. We also conjecture that suspended blenders might appear in the neighbourhood of the network.
Citation: Alexandre A. P. Rodrigues. Infinitely many multi-pulses near a bifocal cycle. Conference Publications, 2015, 2015 (special) : 954-964. doi: 10.3934/proc.2015.0954
References:
[1]

M. A. D. Aguiar, I. S. Labouriau and A. A. P. Rodrigues, Switching near a heteroclinic network of rotating nodes,, Dyn. Syst., 25 (2010), 75. Google Scholar

[2]

C. Bonatti and L. J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms,, Ann. of Math., 143 (1996), 357. Google Scholar

[3]

R. L. Devaney, Homoclinic orbits in Hamiltonian systems,, J. Diff. Equations, 21 (1976), 431. Google Scholar

[4]

R. L. Devaney, Blue sky catastrophes in reversible and Hamiltonian systems,, Indiana Univ. Math. J., 2 (1977), 247. Google Scholar

[5]

A.C. Fowler and C. T. Sparrow, Bifocal homoclinic orbits in four dimensions,, Nonlinearity, 4 (1991), 1159. Google Scholar

[6]

P. Gaspard, R. Kapral and G. Nicolis, Bifurcation phenomena near homoclinic systems: a two parameter analysis,, J. Statist. Phys., 35 (1984), 5. Google Scholar

[7]

J. Harterich, Cascades of reversible homoclinic orbits to a saddle-focus equilibrium,, Phys. D, 112 (1998), 1. Google Scholar

[8]

A. J. Homburg, Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbit to a saddle-focus equilibria,, Nonlinearity, 15 (2002), 1029. Google Scholar

[9]

S. Ibáñez and A.A.P. Rodrigues, On the dynamics near a homoclinic network to a bifocus: switching and horseshoes,, Int. Journal Bif. Chaos, (2015). Google Scholar

[10]

J. Knobloch and T. Wagenknecht, Homoclinic snaking near a heteroclinic cycle in reversible systems,, SIAM J. Appl. Dyn. Syst., 7 (2008). Google Scholar

[11]

I. S. Labouriau and A. A. P. Rodrigues, Global generic dynamics close to symmetry,, Journal of Differential Equations, 253 (2012), 2527. Google Scholar

[12]

C. Laing and P. Glendinning, Bifocal homoclinic bifurcations,, Physica D, 102 (1997), 1. Google Scholar

[13]

J. Lamb and J. Roberts, Time-reversal symmetry in dynamical systems: a survey,, Physica D, 112 (1998), 1. Google Scholar

[14]

L. M. Lerman, Homo and Heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci,, Regular and Chaotic Dynamical Systems, 2 (1997), 139. Google Scholar

[15]

A. A. P. Rodrigues, Persistent switching near a heteroclinic model for the geodynamo problem,, Chaos, 47 (2013), 73. Google Scholar

[16]

L. P. Shilnikov, The existence of a denumerable set of periodic motions in four dimensional space in an extended neighbourhood of a saddle-focus,, Sov. Math. Dokl., 172 (1967), 54. Google Scholar

[17]

L. P. Shilnikov, On the question of the structure of an extended neighborhood of a structurally stable state of equilibrium of saddle-focus type,, Math. USSR Sb., 81 (1970), 92. Google Scholar

[18]

A. Vanderbauwhede and B . Fiedler, Homoclinic period blow-up in reversible and conservative systems,, Z. Angew. Math. Phys., 43 (1992), 292. Google Scholar

[19]

C. Tresser, About some theorems by L. P. Shilnikov,, Ann. Inst. H. Poincaré, 40 (1984), 441. Google Scholar

show all references

References:
[1]

M. A. D. Aguiar, I. S. Labouriau and A. A. P. Rodrigues, Switching near a heteroclinic network of rotating nodes,, Dyn. Syst., 25 (2010), 75. Google Scholar

[2]

C. Bonatti and L. J. Díaz, Persistent nonhyperbolic transitive diffeomorphisms,, Ann. of Math., 143 (1996), 357. Google Scholar

[3]

R. L. Devaney, Homoclinic orbits in Hamiltonian systems,, J. Diff. Equations, 21 (1976), 431. Google Scholar

[4]

R. L. Devaney, Blue sky catastrophes in reversible and Hamiltonian systems,, Indiana Univ. Math. J., 2 (1977), 247. Google Scholar

[5]

A.C. Fowler and C. T. Sparrow, Bifocal homoclinic orbits in four dimensions,, Nonlinearity, 4 (1991), 1159. Google Scholar

[6]

P. Gaspard, R. Kapral and G. Nicolis, Bifurcation phenomena near homoclinic systems: a two parameter analysis,, J. Statist. Phys., 35 (1984), 5. Google Scholar

[7]

J. Harterich, Cascades of reversible homoclinic orbits to a saddle-focus equilibrium,, Phys. D, 112 (1998), 1. Google Scholar

[8]

A. J. Homburg, Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbit to a saddle-focus equilibria,, Nonlinearity, 15 (2002), 1029. Google Scholar

[9]

S. Ibáñez and A.A.P. Rodrigues, On the dynamics near a homoclinic network to a bifocus: switching and horseshoes,, Int. Journal Bif. Chaos, (2015). Google Scholar

[10]

J. Knobloch and T. Wagenknecht, Homoclinic snaking near a heteroclinic cycle in reversible systems,, SIAM J. Appl. Dyn. Syst., 7 (2008). Google Scholar

[11]

I. S. Labouriau and A. A. P. Rodrigues, Global generic dynamics close to symmetry,, Journal of Differential Equations, 253 (2012), 2527. Google Scholar

[12]

C. Laing and P. Glendinning, Bifocal homoclinic bifurcations,, Physica D, 102 (1997), 1. Google Scholar

[13]

J. Lamb and J. Roberts, Time-reversal symmetry in dynamical systems: a survey,, Physica D, 112 (1998), 1. Google Scholar

[14]

L. M. Lerman, Homo and Heteroclinic orbits, hyperbolic subsets in a one-parameter unfolding of a Hamiltonian system with heteroclinic contour with two saddle-foci,, Regular and Chaotic Dynamical Systems, 2 (1997), 139. Google Scholar

[15]

A. A. P. Rodrigues, Persistent switching near a heteroclinic model for the geodynamo problem,, Chaos, 47 (2013), 73. Google Scholar

[16]

L. P. Shilnikov, The existence of a denumerable set of periodic motions in four dimensional space in an extended neighbourhood of a saddle-focus,, Sov. Math. Dokl., 172 (1967), 54. Google Scholar

[17]

L. P. Shilnikov, On the question of the structure of an extended neighborhood of a structurally stable state of equilibrium of saddle-focus type,, Math. USSR Sb., 81 (1970), 92. Google Scholar

[18]

A. Vanderbauwhede and B . Fiedler, Homoclinic period blow-up in reversible and conservative systems,, Z. Angew. Math. Phys., 43 (1992), 292. Google Scholar

[19]

C. Tresser, About some theorems by L. P. Shilnikov,, Ann. Inst. H. Poincaré, 40 (1984), 441. Google Scholar

[1]

Juvencio Alberto Betancourt-Mar, Víctor Alfonso Méndez-Guerrero, Carlos Hernández-Rodríguez, José Manuel Nieto-Villar. Theoretical models for chronotherapy: Periodic perturbations in hyperchaos. Mathematical Biosciences & Engineering, 2010, 7 (3) : 553-560. doi: 10.3934/mbe.2010.7.553

[2]

Michael Leguèbe. Cell scale modeling of electropermeabilization by periodic pulses. Mathematical Biosciences & Engineering, 2015, 12 (3) : 537-554. doi: 10.3934/mbe.2015.12.537

[3]

Benedetta Lisena. Dynamic behaviour of a periodic competitive system with pulses. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 723-729. doi: 10.3934/dcdss.2013.6.723

[4]

Johannes Giannoulis, Alexander Mielke. Dispersive evolution of pulses in oscillator chains with general interaction potentials. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 493-523. doi: 10.3934/dcdsb.2006.6.493

[5]

Yixin Guo, Aijun Zhang. Existence and nonexistence of traveling pulses in a lateral inhibition neural network. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1729-1755. doi: 10.3934/dcdsb.2016020

[6]

Freddy Dumortier, Robert Roussarie. Birth of canard cycles. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 723-781. doi: 10.3934/dcdss.2009.2.723

[7]

Lluís Alsedà, David Juher, Deborah M. King, Francesc Mañosas. Maximizing entropy of cycles on trees. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3237-3276. doi: 10.3934/dcds.2013.33.3237

[8]

Vladimir Georgiev, Eugene Stepanov. Metric cycles, curves and solenoids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1443-1463. doi: 10.3934/dcds.2014.34.1443

[9]

Jaume Llibre, Ana Rodrigues. On the limit cycles of the Floquet differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1129-1136. doi: 10.3934/dcdsb.2014.19.1129

[10]

Freddy Dumortier, Robert Roussarie. Canard cycles with two breaking parameters. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 787-806. doi: 10.3934/dcds.2007.17.787

[11]

Brenton LeMesurier. Continuum approximations for pulses generated by impulsive initial data in binary exciton chain systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1813-1837. doi: 10.3934/dcdsb.2016024

[12]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[13]

Peter Bates, Chunlei Zhang. Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 235-252. doi: 10.3934/dcds.2006.16.235

[14]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[15]

Yunming Zhou, Desheng Shang, Tonghua Zhang. Seventeen limit cycles bifurcations of a fifth system. Conference Publications, 2007, 2007 (Special) : 1070-1081. doi: 10.3934/proc.2007.2007.1070

[16]

Jaume Llibre, Dana Schlomiuk. On the limit cycles bifurcating from an ellipse of a quadratic center. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1091-1102. doi: 10.3934/dcds.2015.35.1091

[17]

Maoan Han, Tonghua Zhang. Some bifurcation methods of finding limit cycles. Mathematical Biosciences & Engineering, 2006, 3 (1) : 67-77. doi: 10.3934/mbe.2006.3.67

[18]

Maoan Han. On some properties and limit cycles of Lienard systems. Conference Publications, 2001, 2001 (Special) : 426-434. doi: 10.3934/proc.2001.2001.426

[19]

Zhanyuan Hou, Stephen Baigent. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4071-4093. doi: 10.3934/dcds.2013.33.4071

[20]

Shin Kiriki, Yusuke Nishizawa, Teruhiko Soma. Heterodimensional tangencies on cycles leading to strange attractors. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 285-300. doi: 10.3934/dcds.2010.27.285

 Impact Factor: 

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]