2015, 2015(special): 965-973. doi: 10.3934/proc.2015.0965

Exact lumping of feller semigroups: A $C^{\star}$-algebras approach

1. 

Max-Planck-Institut for Mathematics in the Sciences, Inselstrasse 22, Leipzig, D-04103, Germany

Received  September 2014 Revised  December 2014 Published  November 2015

In this note we analyze a particular exact lumping of Feller semigroups in the context of $C^{\star}$-algebras, in order to pass from a space of functions defined on a locally compact Hausdorff space ${X}$ to a space of functions defined on a closed subspace ${\mathscr{C}}\subset X$. We want our reduction to preserve the essential properties of the Feller semigroup.
Citation: Lavinia Roncoroni. Exact lumping of feller semigroups: A $C^{\star}$-algebras approach. Conference Publications, 2015, 2015 (special) : 965-973. doi: 10.3934/proc.2015.0965
References:
[1]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-parameter Semigroups of Positive Operators,, Lecture Notes in Mathematics, 1184 (1986).   Google Scholar

[2]

F. Atay and L. Roncoroni, Exact Lumpability of Linear Evolution Equations,, preprint, 109 (2013).   Google Scholar

[3]

R. M. Blumenthal and R.k. Getoor, Markov processes and potential theory,, Pure and Applied Mathematics, 29 (1968).   Google Scholar

[4]

H. Brezis, Analyse fonctionnelle,, (French) [Functional analysis] Thorie et applications. [Theory and applications] Collection Mathmatiques Appliques pour la Matrise. [Collection of Applied Mathematics for the Master's Degree] Masson, (1983).   Google Scholar

[5]

N. L. Carothers, A Short Course on Banach Space Theory,, London Mathematical Society Student Texts, 64 (2005).   Google Scholar

[6]

J. A. Van Casteren, Markov Processes, Feller Semigroups and Evolution Equations,, Series on Concrete and Applicable Mathematics, 12 (2011).   Google Scholar

[7]

P. G. Coxson, Lumpability and Observability of Linear Systems,, Journal of Mathematical Analysis and Applications, 99 (1984), 435.   Google Scholar

[8]

K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolutions Equations,, With contributions by S. Brendle, 194 (2000).   Google Scholar

[9]

L. Gurvits and J. Ledoux, Markov property for a function of a Markov chain: A linear algebra approach,, Linear algebra and its Applications 404 (2005), (2005), 85.   Google Scholar

[10]

E. Kaniuth, A Course in Commutative Banach algebras,, Graduate Texts in Mathematics, 246 (2009).   Google Scholar

[11]

G. Li and H. Rabitz, A general analysis of exact lumping in chemical kinetics,, Chemical Engineering Science, 44 (1989), 1413.   Google Scholar

[12]

G. K. Pedersen, Analysis Now,, Graduate Texts in Mathematics, 118 (1989).   Google Scholar

[13]

W. Rudin, Functional Analysis,, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., (1973).   Google Scholar

[14]

J. Toth, G. Li, H. Rabitz and A. S. Tomlin, The effect of lumping and expanding on kinetic differential equations,, SIAM J. Appl. Math. 57 No.6 (1997), 57 (1997), 1531.   Google Scholar

[15]

J. Wei and J. C. W. Kuo, A Lumping Analysis in Monomolecular Reaction Systems,, Ind. Eng. Chem. Fundamen., 8 (1969), 124.   Google Scholar

[16]

Z. Rózsa and J. Tóth, Exact linear lumping in abstract spaces,, Proceedings of the 7th Colloquium on the Qualitative Theory of Differential Equations, ().   Google Scholar

[17]

J. H. Zwart, Geometric Theory for Infinite Dimensional Systems,, Lecture Notes in Control and Information Sciences, 115 (1989).   Google Scholar

show all references

References:
[1]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-parameter Semigroups of Positive Operators,, Lecture Notes in Mathematics, 1184 (1986).   Google Scholar

[2]

F. Atay and L. Roncoroni, Exact Lumpability of Linear Evolution Equations,, preprint, 109 (2013).   Google Scholar

[3]

R. M. Blumenthal and R.k. Getoor, Markov processes and potential theory,, Pure and Applied Mathematics, 29 (1968).   Google Scholar

[4]

H. Brezis, Analyse fonctionnelle,, (French) [Functional analysis] Thorie et applications. [Theory and applications] Collection Mathmatiques Appliques pour la Matrise. [Collection of Applied Mathematics for the Master's Degree] Masson, (1983).   Google Scholar

[5]

N. L. Carothers, A Short Course on Banach Space Theory,, London Mathematical Society Student Texts, 64 (2005).   Google Scholar

[6]

J. A. Van Casteren, Markov Processes, Feller Semigroups and Evolution Equations,, Series on Concrete and Applicable Mathematics, 12 (2011).   Google Scholar

[7]

P. G. Coxson, Lumpability and Observability of Linear Systems,, Journal of Mathematical Analysis and Applications, 99 (1984), 435.   Google Scholar

[8]

K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolutions Equations,, With contributions by S. Brendle, 194 (2000).   Google Scholar

[9]

L. Gurvits and J. Ledoux, Markov property for a function of a Markov chain: A linear algebra approach,, Linear algebra and its Applications 404 (2005), (2005), 85.   Google Scholar

[10]

E. Kaniuth, A Course in Commutative Banach algebras,, Graduate Texts in Mathematics, 246 (2009).   Google Scholar

[11]

G. Li and H. Rabitz, A general analysis of exact lumping in chemical kinetics,, Chemical Engineering Science, 44 (1989), 1413.   Google Scholar

[12]

G. K. Pedersen, Analysis Now,, Graduate Texts in Mathematics, 118 (1989).   Google Scholar

[13]

W. Rudin, Functional Analysis,, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., (1973).   Google Scholar

[14]

J. Toth, G. Li, H. Rabitz and A. S. Tomlin, The effect of lumping and expanding on kinetic differential equations,, SIAM J. Appl. Math. 57 No.6 (1997), 57 (1997), 1531.   Google Scholar

[15]

J. Wei and J. C. W. Kuo, A Lumping Analysis in Monomolecular Reaction Systems,, Ind. Eng. Chem. Fundamen., 8 (1969), 124.   Google Scholar

[16]

Z. Rózsa and J. Tóth, Exact linear lumping in abstract spaces,, Proceedings of the 7th Colloquium on the Qualitative Theory of Differential Equations, ().   Google Scholar

[17]

J. H. Zwart, Geometric Theory for Infinite Dimensional Systems,, Lecture Notes in Control and Information Sciences, 115 (1989).   Google Scholar

[1]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[4]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[5]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[8]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[9]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[10]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[11]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[12]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[13]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[14]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[15]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[16]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[17]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[18]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[19]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[20]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

 Impact Factor: 

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]