2015, 2015(special): 965-973. doi: 10.3934/proc.2015.0965

Exact lumping of feller semigroups: A $C^{\star}$-algebras approach

1. 

Max-Planck-Institut for Mathematics in the Sciences, Inselstrasse 22, Leipzig, D-04103, Germany

Received  September 2014 Revised  December 2014 Published  November 2015

In this note we analyze a particular exact lumping of Feller semigroups in the context of $C^{\star}$-algebras, in order to pass from a space of functions defined on a locally compact Hausdorff space ${X}$ to a space of functions defined on a closed subspace ${\mathscr{C}}\subset X$. We want our reduction to preserve the essential properties of the Feller semigroup.
Citation: Lavinia Roncoroni. Exact lumping of feller semigroups: A $C^{\star}$-algebras approach. Conference Publications, 2015, 2015 (special) : 965-973. doi: 10.3934/proc.2015.0965
References:
[1]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-parameter Semigroups of Positive Operators,, Lecture Notes in Mathematics, 1184 (1986).   Google Scholar

[2]

F. Atay and L. Roncoroni, Exact Lumpability of Linear Evolution Equations,, preprint, 109 (2013).   Google Scholar

[3]

R. M. Blumenthal and R.k. Getoor, Markov processes and potential theory,, Pure and Applied Mathematics, 29 (1968).   Google Scholar

[4]

H. Brezis, Analyse fonctionnelle,, (French) [Functional analysis] Thorie et applications. [Theory and applications] Collection Mathmatiques Appliques pour la Matrise. [Collection of Applied Mathematics for the Master's Degree] Masson, (1983).   Google Scholar

[5]

N. L. Carothers, A Short Course on Banach Space Theory,, London Mathematical Society Student Texts, 64 (2005).   Google Scholar

[6]

J. A. Van Casteren, Markov Processes, Feller Semigroups and Evolution Equations,, Series on Concrete and Applicable Mathematics, 12 (2011).   Google Scholar

[7]

P. G. Coxson, Lumpability and Observability of Linear Systems,, Journal of Mathematical Analysis and Applications, 99 (1984), 435.   Google Scholar

[8]

K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolutions Equations,, With contributions by S. Brendle, 194 (2000).   Google Scholar

[9]

L. Gurvits and J. Ledoux, Markov property for a function of a Markov chain: A linear algebra approach,, Linear algebra and its Applications 404 (2005), (2005), 85.   Google Scholar

[10]

E. Kaniuth, A Course in Commutative Banach algebras,, Graduate Texts in Mathematics, 246 (2009).   Google Scholar

[11]

G. Li and H. Rabitz, A general analysis of exact lumping in chemical kinetics,, Chemical Engineering Science, 44 (1989), 1413.   Google Scholar

[12]

G. K. Pedersen, Analysis Now,, Graduate Texts in Mathematics, 118 (1989).   Google Scholar

[13]

W. Rudin, Functional Analysis,, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., (1973).   Google Scholar

[14]

J. Toth, G. Li, H. Rabitz and A. S. Tomlin, The effect of lumping and expanding on kinetic differential equations,, SIAM J. Appl. Math. 57 No.6 (1997), 57 (1997), 1531.   Google Scholar

[15]

J. Wei and J. C. W. Kuo, A Lumping Analysis in Monomolecular Reaction Systems,, Ind. Eng. Chem. Fundamen., 8 (1969), 124.   Google Scholar

[16]

Z. Rózsa and J. Tóth, Exact linear lumping in abstract spaces,, Proceedings of the 7th Colloquium on the Qualitative Theory of Differential Equations, ().   Google Scholar

[17]

J. H. Zwart, Geometric Theory for Infinite Dimensional Systems,, Lecture Notes in Control and Information Sciences, 115 (1989).   Google Scholar

show all references

References:
[1]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, One-parameter Semigroups of Positive Operators,, Lecture Notes in Mathematics, 1184 (1986).   Google Scholar

[2]

F. Atay and L. Roncoroni, Exact Lumpability of Linear Evolution Equations,, preprint, 109 (2013).   Google Scholar

[3]

R. M. Blumenthal and R.k. Getoor, Markov processes and potential theory,, Pure and Applied Mathematics, 29 (1968).   Google Scholar

[4]

H. Brezis, Analyse fonctionnelle,, (French) [Functional analysis] Thorie et applications. [Theory and applications] Collection Mathmatiques Appliques pour la Matrise. [Collection of Applied Mathematics for the Master's Degree] Masson, (1983).   Google Scholar

[5]

N. L. Carothers, A Short Course on Banach Space Theory,, London Mathematical Society Student Texts, 64 (2005).   Google Scholar

[6]

J. A. Van Casteren, Markov Processes, Feller Semigroups and Evolution Equations,, Series on Concrete and Applicable Mathematics, 12 (2011).   Google Scholar

[7]

P. G. Coxson, Lumpability and Observability of Linear Systems,, Journal of Mathematical Analysis and Applications, 99 (1984), 435.   Google Scholar

[8]

K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolutions Equations,, With contributions by S. Brendle, 194 (2000).   Google Scholar

[9]

L. Gurvits and J. Ledoux, Markov property for a function of a Markov chain: A linear algebra approach,, Linear algebra and its Applications 404 (2005), (2005), 85.   Google Scholar

[10]

E. Kaniuth, A Course in Commutative Banach algebras,, Graduate Texts in Mathematics, 246 (2009).   Google Scholar

[11]

G. Li and H. Rabitz, A general analysis of exact lumping in chemical kinetics,, Chemical Engineering Science, 44 (1989), 1413.   Google Scholar

[12]

G. K. Pedersen, Analysis Now,, Graduate Texts in Mathematics, 118 (1989).   Google Scholar

[13]

W. Rudin, Functional Analysis,, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., (1973).   Google Scholar

[14]

J. Toth, G. Li, H. Rabitz and A. S. Tomlin, The effect of lumping and expanding on kinetic differential equations,, SIAM J. Appl. Math. 57 No.6 (1997), 57 (1997), 1531.   Google Scholar

[15]

J. Wei and J. C. W. Kuo, A Lumping Analysis in Monomolecular Reaction Systems,, Ind. Eng. Chem. Fundamen., 8 (1969), 124.   Google Scholar

[16]

Z. Rózsa and J. Tóth, Exact linear lumping in abstract spaces,, Proceedings of the 7th Colloquium on the Qualitative Theory of Differential Equations, ().   Google Scholar

[17]

J. H. Zwart, Geometric Theory for Infinite Dimensional Systems,, Lecture Notes in Control and Information Sciences, 115 (1989).   Google Scholar

[1]

Poongodi Rathinasamy, Murugesu Rangasamy, Nirmalkumar Rajendran. Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions. Evolution Equations & Control Theory, 2017, 6 (4) : 599-613. doi: 10.3934/eect.2017030

[2]

Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753

[3]

Hernan R. Henriquez. Generalized solutions for the abstract singular Cauchy problem. Communications on Pure & Applied Analysis, 2009, 8 (3) : 955-976. doi: 10.3934/cpaa.2009.8.955

[4]

Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201

[5]

Nobuyuki Kato. Linearized stability and asymptotic properties for abstract boundary value functional evolution problems. Conference Publications, 1998, 1998 (Special) : 371-387. doi: 10.3934/proc.1998.1998.371

[6]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[7]

Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529

[8]

Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks & Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017

[9]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[10]

Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Exact multiplicity of stationary limiting problems of a cell polarization model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5627-5655. doi: 10.3934/dcds.2016047

[11]

Yanqing Wang, Donghui Yang, Jiongmin Yong, Zhiyong Yu. Exact controllability of linear stochastic differential equations and related problems. Mathematical Control & Related Fields, 2017, 7 (2) : 305-345. doi: 10.3934/mcrf.2017011

[12]

Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705

[13]

Ahmet Sahiner, Gulden Kapusuz, Nurullah Yilmaz. A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 161-173. doi: 10.3934/naco.2016006

[14]

Junping Shi, Ratnasingham Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 559-571. doi: 10.3934/dcds.2001.7.559

[15]

Xiaoling Sun, Hongbo Sheng, Duan Li. An exact algorithm for 0-1 polynomial knapsack problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 223-232. doi: 10.3934/jimo.2007.3.223

[16]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[17]

Linfeng Mei, Zongming Guo. Morse indices and symmetry breaking for the Gelfand equation in expanding annuli. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1509-1523. doi: 10.3934/dcdsb.2017072

[18]

Futoshi Takahashi. Singular extremal solutions to a Liouville-Gelfand type problem with exponential nonlinearity. Conference Publications, 2015, 2015 (special) : 1025-1033. doi: 10.3934/proc.2015.1025

[19]

Olga Bernardi, Franco Cardin, Antonio Siconolfi. Cauchy problems for stationary Hamilton-Jacobi equations under mild regularity assumptions. Journal of Geometric Mechanics, 2009, 1 (3) : 271-294. doi: 10.3934/jgm.2009.1.271

[20]

Ti-Jun Xiao, Jin Liang. Pazy-type characterization for differentiability of propagators of higher order Cauchy problems in Banach spaces. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 651-662. doi: 10.3934/dcds.1999.5.651

 Impact Factor: 

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]