2015, 2015(special): 974-980. doi: 10.3934/proc.2015.0974

A model of malignant gliomas throug symmetry reductions

1. 

Dpto. de Matemáticas, Universidad de Cádiz, Polígono del Río San Pedro s/n 11510 Puerto Real, Cádiz, Spain, Spain, Spain

Received  September 2014 Revised  May 2015 Published  November 2015

A glioma is a kind of tumor that starts in the brain or spine. The most common site of gliomas is in the brain. Most of the mathematical models in use for malignant gliomas are based on a simple reaction-diffusion equation: the Fisher equation [3]. A nonlinear wave model describing the fundamental features of these tumors has been introduced in [5], by V.M. Pérez and collaborators. In this work, we study this model from the point of view of the theory of symmetry reductions in partial differential equations. We obtain the classical symmetries admitted by the system, then, we use the transformations groups to reduce the equations to ordinary differential equations. Some exact solutions are derived from the solutions of a simple non-linear ordinary differential equation.
Citation: María Rosa, María S. Bruzón, M. L. Gandarias. A model of malignant gliomas throug symmetry reductions. Conference Publications, 2015, 2015 (special) : 974-980. doi: 10.3934/proc.2015.0974
References:
[1]

G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154 (2002).   Google Scholar

[2]

N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations Chaos., Solitons and Fractals, 24 (2005), 1217.   Google Scholar

[3]

J. D. Murray, Mathematical Biology,, Third Edition, (2002).   Google Scholar

[4]

P. Olver, Applications of Lie Groups to Differential Equations,, Springer-Verlag, (1993).   Google Scholar

[5]

V. M. Pérez-García, G. F. Calvo, J. Belmonte-Beitia, D. Diego, and L. Pérez-Romasanta, Bright solitary waves in malignant gliomas,, Physical Review E., 84 (2011).   Google Scholar

[6]

K. R. Swanson, C. Bridge, J. D. Murray, and E. C. Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion,, Journal of the Neurological Sciences, 216 (2003), 1.   Google Scholar

[7]

N. K. Vitanov, Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs,, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1176.   Google Scholar

[8]

E. Yombaa, Exact Solitary Waves of the Fisher Equation,, IMA Preprint Series, (2005).   Google Scholar

show all references

References:
[1]

G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences, 154 (2002).   Google Scholar

[2]

N. A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations Chaos., Solitons and Fractals, 24 (2005), 1217.   Google Scholar

[3]

J. D. Murray, Mathematical Biology,, Third Edition, (2002).   Google Scholar

[4]

P. Olver, Applications of Lie Groups to Differential Equations,, Springer-Verlag, (1993).   Google Scholar

[5]

V. M. Pérez-García, G. F. Calvo, J. Belmonte-Beitia, D. Diego, and L. Pérez-Romasanta, Bright solitary waves in malignant gliomas,, Physical Review E., 84 (2011).   Google Scholar

[6]

K. R. Swanson, C. Bridge, J. D. Murray, and E. C. Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion,, Journal of the Neurological Sciences, 216 (2003), 1.   Google Scholar

[7]

N. K. Vitanov, Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs,, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1176.   Google Scholar

[8]

E. Yombaa, Exact Solitary Waves of the Fisher Equation,, IMA Preprint Series, (2005).   Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[11]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[12]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[13]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

 Impact Factor: 

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]