
Previous Article
A model of malignant gliomas throug symmetry reductions
 PROC Home
 This Issue

Next Article
Noether's theorem for higherorder variational problems of Herglotz type
Symmetries and solutions of a third order equation
1.  Instituto de Matemática, Estatística e Computação Científica, IMECC  UNICAMP, Sérgio Buarque de Holanda, 651, 13083859, Campinas, SP, Brazil 
2.  Centro de Matemática, Computação e Cognição, Universidade Federal do ABC  UFABC, Rua Santa Adélia, 166, Bairro Bangu, 09.210  170, Santo André, SP 
References:
[1] 
G. W. Bluman and S. Kumei, Symmetries and Differential Equations,, Applied Mathematical Sciences 81, 81 (1989). Google Scholar 
[2] 
G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations,, Applied Mathematical Sciences 154, (2002). Google Scholar 
[3] 
S. Anco and G. Bluman, Direct construction of conservation laws from field equations,, Phys. Rev. Lett., 78 (1997), 2869. Google Scholar 
[4] 
S. Anco and G. Bluman, Integrating factors and first integrals for ordinary differential equations,, European J. Appl. Math., 9 (1998), 245. Google Scholar 
[5] 
S. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications,, European J. Appl. Math., 13 (2002), 545. Google Scholar 
[6] 
S. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations. II. General treatment,, European J. Appl. Math., 13 (2002), 567. Google Scholar 
[7] 
G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations,, Springer, (2002). Google Scholar 
[8] 
G. Bluman, A. Cheviakov and S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations,, Springer Applied Mathematics Series 168, 168 (2010). Google Scholar 
[9] 
N. H. Ibragimov, Transformation groups applied to mathematical physics,, Translated from the Russian Mathematics and its Applications (Soviet Series), (1985). Google Scholar 
[10] 
N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations,, John Wiley and Sons, (1999). Google Scholar 
[11] 
A. Sen, D. P. Ahalpara, A. Thyagaraja and G. S. Krishnaswami, A KdVlike advectiondispersion equation with some remarkable properties,, Commun. Nonlin. Sci. Num. Simul., 17 (2012), 4115. Google Scholar 
[12] 
P. J. Olver, Applications of Lie groups to differential equations,, Springer, (1986). Google Scholar 
[13] 
A. D. Polyanin and V. F. Zaitsev, Handbook of exact solutions for ordinary differential equations,, 2nd Edition, (2003). Google Scholar 
show all references
References:
[1] 
G. W. Bluman and S. Kumei, Symmetries and Differential Equations,, Applied Mathematical Sciences 81, 81 (1989). Google Scholar 
[2] 
G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations,, Applied Mathematical Sciences 154, (2002). Google Scholar 
[3] 
S. Anco and G. Bluman, Direct construction of conservation laws from field equations,, Phys. Rev. Lett., 78 (1997), 2869. Google Scholar 
[4] 
S. Anco and G. Bluman, Integrating factors and first integrals for ordinary differential equations,, European J. Appl. Math., 9 (1998), 245. Google Scholar 
[5] 
S. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications,, European J. Appl. Math., 13 (2002), 545. Google Scholar 
[6] 
S. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations. II. General treatment,, European J. Appl. Math., 13 (2002), 567. Google Scholar 
[7] 
G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations,, Springer, (2002). Google Scholar 
[8] 
G. Bluman, A. Cheviakov and S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations,, Springer Applied Mathematics Series 168, 168 (2010). Google Scholar 
[9] 
N. H. Ibragimov, Transformation groups applied to mathematical physics,, Translated from the Russian Mathematics and its Applications (Soviet Series), (1985). Google Scholar 
[10] 
N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations,, John Wiley and Sons, (1999). Google Scholar 
[11] 
A. Sen, D. P. Ahalpara, A. Thyagaraja and G. S. Krishnaswami, A KdVlike advectiondispersion equation with some remarkable properties,, Commun. Nonlin. Sci. Num. Simul., 17 (2012), 4115. Google Scholar 
[12] 
P. J. Olver, Applications of Lie groups to differential equations,, Springer, (1986). Google Scholar 
[13] 
A. D. Polyanin and V. F. Zaitsev, Handbook of exact solutions for ordinary differential equations,, 2nd Edition, (2003). Google Scholar 
[1] 
Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear thirdorder ordinary differential equations. Discrete & Continuous Dynamical Systems  S, 2018, 11 (4) : 655666. doi: 10.3934/dcdss.2018040 
[2] 
Ruyun Ma, Yanqiong Lu. Disconjugacy and extremal solutions of nonlinear thirdorder equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 12231236. doi: 10.3934/cpaa.2014.13.1223 
[3] 
Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries  A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312321. doi: 10.3934/proc.2011.2011.312 
[4] 
Juan BelmonteBeitia, Víctor M. PérezGarcía, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete & Continuous Dynamical Systems  B, 2008, 9 (2) : 221233. doi: 10.3934/dcdsb.2008.9.221 
[5] 
Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323335. doi: 10.3934/jgm.2011.3.323 
[6] 
John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337344. doi: 10.3934/proc.2005.2005.337 
[7] 
John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 8997. doi: 10.3934/dcdss.2008.1.89 
[8] 
John R. Graef, R. Savithri, E. Thandapani. Oscillatory properties of third order neutral delay differential equations. Conference Publications, 2003, 2003 (Special) : 342350. doi: 10.3934/proc.2003.2003.342 
[9] 
Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517526. doi: 10.3934/jgm.2015.7.517 
[10] 
M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Secondorder evolution equations. Discrete & Continuous Dynamical Systems  A, 2017, 37 (8) : 42394247. doi: 10.3934/dcds.2017181 
[11] 
John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$laplacian. Conference Publications, 2011, 2011 (Special) : 515522. doi: 10.3934/proc.2011.2011.515 
[12] 
M . Bartušek, John R. Graef. Some limitpoint/limitcircle results for third order differential equations. Conference Publications, 2001, 2001 (Special) : 3138. doi: 10.3934/proc.2001.2001.31 
[13] 
Jie Shen, LiLian Wang. Laguerre and composite LegendreLaguerre DualPetrovGalerkin methods for thirdorder equations. Discrete & Continuous Dynamical Systems  B, 2006, 6 (6) : 13811402. doi: 10.3934/dcdsb.2006.6.1381 
[14] 
Michael Hochman. Smooth symmetries of $\times a$invariant sets. Journal of Modern Dynamics, 2018, 13: 187197. doi: 10.3934/jmd.2018017 
[15] 
José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for secondorder differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213222. doi: 10.3934/proc.2015.0213 
[16] 
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 221248. doi: 10.3934/dcds.2009.23.221 
[17] 
María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete & Continuous Dynamical Systems  S, 2015, 8 (6) : 13311339. doi: 10.3934/dcdss.2015.8.1331 
[18] 
Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete & Continuous Dynamical Systems  A, 2019, 39 (4) : 19571974. doi: 10.3934/dcds.2019082 
[19] 
Chaudry Masood Khalique. Some invariant solutions of certain soil water equations. Conference Publications, 2001, 2001 (Special) : 218223. doi: 10.3934/proc.2001.2001.218 
[20] 
C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477481. doi: 10.3934/proc.2003.2003.477 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]