2015, 2015(special): 981-989. doi: 10.3934/proc.2015.0981

Symmetries and solutions of a third order equation

1. 

Instituto de Matemática, Estatística e Computação Cie ntífica, IMECC - UNICAMP, Sérgio Buarque de Holanda, 651, 13083-859, Campinas, SP, Brazil

2. 

Centro de Matemática, Computação e Cognição, Universidade Federal do ABC - UFABC, Rua Santa Adélia, 166, Bairro Bangu, 09.210 -- 170, Santo André, SP

Received  September 2014 Revised  January 2015 Published  November 2015

In this paper we study a new third order evolution equation discovered a couple of years ago using a genetic programming. We show that the Lie symmetries of this equation corresponds to space and time translations, as well as a dilation on the space of independent variables and another one with respect to the depend variable. From its symmetries, explicit solutions of the equation are obtained, some of them expressed in terms of the solutions of the Airy equation and Abel equation of the second kind. Additionally, by using the direct method we establish three conservation laws for the equation, one of them new.
Citation: Júlio Cesar Santos Sampaio, Igor Leite Freire. Symmetries and solutions of a third order equation. Conference Publications, 2015, 2015 (special) : 981-989. doi: 10.3934/proc.2015.0981
References:
[1]

G. W. Bluman and S. Kumei, Symmetries and Differential Equations,, Applied Mathematical Sciences 81, 81 (1989). Google Scholar

[2]

G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations,, Applied Mathematical Sciences 154, (2002). Google Scholar

[3]

S. Anco and G. Bluman, Direct construction of conservation laws from field equations,, Phys. Rev. Lett., 78 (1997), 2869. Google Scholar

[4]

S. Anco and G. Bluman, Integrating factors and first integrals for ordinary differential equations,, European J. Appl. Math., 9 (1998), 245. Google Scholar

[5]

S. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications,, European J. Appl. Math., 13 (2002), 545. Google Scholar

[6]

S. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations. II. General treatment,, European J. Appl. Math., 13 (2002), 567. Google Scholar

[7]

G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations,, Springer, (2002). Google Scholar

[8]

G. Bluman, A. Cheviakov and S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations,, Springer Applied Mathematics Series 168, 168 (2010). Google Scholar

[9]

N. H. Ibragimov, Transformation groups applied to mathematical physics,, Translated from the Russian Mathematics and its Applications (Soviet Series), (1985). Google Scholar

[10]

N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations,, John Wiley and Sons, (1999). Google Scholar

[11]

A. Sen, D. P. Ahalpara, A. Thyagaraja and G. S. Krishnaswami, A KdV-like advection-dispersion equation with some remarkable properties,, Commun. Nonlin. Sci. Num. Simul., 17 (2012), 4115. Google Scholar

[12]

P. J. Olver, Applications of Lie groups to differential equations,, Springer, (1986). Google Scholar

[13]

A. D. Polyanin and V. F. Zaitsev, Handbook of exact solutions for ordinary differential equations,, 2nd Edition, (2003). Google Scholar

show all references

References:
[1]

G. W. Bluman and S. Kumei, Symmetries and Differential Equations,, Applied Mathematical Sciences 81, 81 (1989). Google Scholar

[2]

G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations,, Applied Mathematical Sciences 154, (2002). Google Scholar

[3]

S. Anco and G. Bluman, Direct construction of conservation laws from field equations,, Phys. Rev. Lett., 78 (1997), 2869. Google Scholar

[4]

S. Anco and G. Bluman, Integrating factors and first integrals for ordinary differential equations,, European J. Appl. Math., 9 (1998), 245. Google Scholar

[5]

S. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications,, European J. Appl. Math., 13 (2002), 545. Google Scholar

[6]

S. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations. II. General treatment,, European J. Appl. Math., 13 (2002), 567. Google Scholar

[7]

G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations,, Springer, (2002). Google Scholar

[8]

G. Bluman, A. Cheviakov and S.C. Anco, Applications of Symmetry Methods to Partial Differential Equations,, Springer Applied Mathematics Series 168, 168 (2010). Google Scholar

[9]

N. H. Ibragimov, Transformation groups applied to mathematical physics,, Translated from the Russian Mathematics and its Applications (Soviet Series), (1985). Google Scholar

[10]

N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations,, John Wiley and Sons, (1999). Google Scholar

[11]

A. Sen, D. P. Ahalpara, A. Thyagaraja and G. S. Krishnaswami, A KdV-like advection-dispersion equation with some remarkable properties,, Commun. Nonlin. Sci. Num. Simul., 17 (2012), 4115. Google Scholar

[12]

P. J. Olver, Applications of Lie groups to differential equations,, Springer, (1986). Google Scholar

[13]

A. D. Polyanin and V. F. Zaitsev, Handbook of exact solutions for ordinary differential equations,, 2nd Edition, (2003). Google Scholar

[1]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[2]

Ruyun Ma, Yanqiong Lu. Disconjugacy and extremal solutions of nonlinear third-order equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1223-1236. doi: 10.3934/cpaa.2014.13.1223

[3]

Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312

[4]

Juan Belmonte-Beitia, Víctor M. Pérez-García, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 221-233. doi: 10.3934/dcdsb.2008.9.221

[5]

Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323

[6]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

[7]

John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 89-97. doi: 10.3934/dcdss.2008.1.89

[8]

John R. Graef, R. Savithri, E. Thandapani. Oscillatory properties of third order neutral delay differential equations. Conference Publications, 2003, 2003 (Special) : 342-350. doi: 10.3934/proc.2003.2003.342

[9]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[10]

M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181

[11]

John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515

[12]

M . Bartušek, John R. Graef. Some limit-point/limit-circle results for third order differential equations. Conference Publications, 2001, 2001 (Special) : 31-38. doi: 10.3934/proc.2001.2001.31

[13]

Jie Shen, Li-Lian Wang. Laguerre and composite Legendre-Laguerre Dual-Petrov-Galerkin methods for third-order equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1381-1402. doi: 10.3934/dcdsb.2006.6.1381

[14]

Michael Hochman. Smooth symmetries of $\times a$-invariant sets. Journal of Modern Dynamics, 2018, 13: 187-197. doi: 10.3934/jmd.2018017

[15]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[16]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[17]

María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331

[18]

Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1957-1974. doi: 10.3934/dcds.2019082

[19]

Chaudry Masood Khalique. Some invariant solutions of certain soil water equations. Conference Publications, 2001, 2001 (Special) : 218-223. doi: 10.3934/proc.2001.2001.218

[20]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

 Impact Factor: 

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

[Back to Top]