2015, 2015(special): 1000-1008. doi: 10.3934/proc.2015.1000

Absorbing boundary conditions for the Westervelt equation

1. 

Imperial College London, Department of Mathematics, London, SW7 2AZ, United Kingdom

2. 

Alpen-Adria-Universität Klagenfurt, Institute of Mathematics, Klagenfurt, A-9020, Austria

Received  September 2014 Revised  December 2014 Published  November 2015

The focus of this work is on the construction of a family of nonlinear absorbing boundary conditions for the Westervelt equation in one and two space dimensions. The principal ingredient used in the design of such conditions is pseudo-differential calculus. This approach enables to develop high order boundary conditions in a consistent way which are typically more accurate than their low order analogs. Under the hypothesis of small initial data, we establish local well-posedness for the Westervelt equation with the absorbing boundary conditions. The performed numerical experiments illustrate the efficiency of the proposed boundary conditions for different regimes of wave propagation.
Citation: Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000
References:
[1]

P. J. Westervelt, Parametric acoustic array, J. Acoust. Soc. Am., 35 (1963), 535-537. Google Scholar

[2]

M. Averkiou and R. Cleveland, Modeling of an electrohydraulic lithotripter with the KZK equation, J. Acoust. Soc. Am., 106 (1999), 102-112. Google Scholar

[3]

C. Le Floch and M. Fink, Ultrasonic mapping of temperature in hyperthermia: the thermal lens effect, in Proceedings of 1997 IEEE Ultrasonics Symposium, (1997), 1301-1304. Google Scholar

[4]

C. Simon, P. VanBaren and E. Ebbini, Two-dimensional temperature estimation using diagnostic ultrasound, IEEE Trans. Ultrason. Ferr., 45 (1998), 1088-1099. Google Scholar

[5]

M. Pernot, K. Waters, J. Bercoff, M. Tanter and M. Fink, Reduction of the thermo-acoustic lens effect during ultrasound-based temperature estimation, in Proceedings of 2002 IEEE Ultrasonics Symposium, (2002), 1447-1450. Google Scholar

[6]

C. Le Floch, M. Tanter and M. Fink, Self-defocusing in ultrasonic hyperthermia: Experiment and simulation, Appl. Phys. Lett., 74 (1999), 3062-3064. Google Scholar

[7]

I. Hallaj, R. Cleveland and K. Hynynen, Simulations of the thermo-acoustic lens effect during focused ultrasound surgery, J. Acoust. Soc. Am., 109 (2001), 2245-2253. Google Scholar

[8]

C. Connor and K. Hynynen, Bio-acoustic thermal lensing and nonlinear propagation in focused ultrasound surgery using large focal spots: a parametric study, Phys. Med. Biol., 47 (2002), 1911-1928. Google Scholar

[9]

S. Tsynkov, Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math., 27 (1998), 465-532. Google Scholar

[10]

T. Hagstrom, New results on absorbing layers and radiation boundary conditions, in Topics in computational wave propagation. Direct and inverse problems. Lect. Notes Comput. Sci. Eng. (M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynne), Springer-Verlag, (2003), 1-42. Google Scholar

[11]

D. Givoli, High-order local non-reflecting boundary conditions: a review, Wave motion, 39 (2004), 319-326. Google Scholar

[12]

D. Givoli, Computational absorbing boundaries, in Computational Acoustics of Noise Propagation in Fluids (S. Marburg and B. Nolte), Springer-Verlag, (2008), 145-166. Google Scholar

[13]

B. Engquist and A. Majda, Radiation Boundary Conditions for Acoustic and Elastic Wave Calculations, Comm. Pure Appl. Math., 32 (1979), 313-357. Google Scholar

[14]

E. Bécache, D. Givoli and T. Hagstrom, High-order absorbing boundary conditions for anisotropic and convective wave equations, J. Comput. Phys., 229 (2010), 1099-1129. Google Scholar

[15]

G. W. Hedstrom, Nonreflecting Boundary Conditions for Nonlinear Hyperbolic Systems, J. Comput. Phys., 30 (1979), 222-237. Google Scholar

[16]

J. Szeftel, Absorbing boundary conditions for nonlinear scalar partial differential equations, Comput. Method. Appl. M., 195 (2006), 3760-3775. Google Scholar

[17]

J. Zhang, Z. Xu and X. Wu, Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations: Two-dimensional case, Phys. Rev. E, 79 (2009), 046711-1-046711-8. Google Scholar

[18]

R. R. Paz, M. A. Storti and L. Garelli, Absorbing Boundary Condition for Nonlinear Hyperbolic Partial Differential Equations with Unknown Riemann Invariants, Fluid Mechanics (C), XXVIII (2009), 1593-1620. Google Scholar

[19]

J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Commun. Pure Appl. Math., 18 (1965), 269-305. Google Scholar

[20]

L. Hörmander, Pseudo-differential operators, Commun. Pure Appl. Math., 18 (1965), 501-517. Google Scholar

[21]

L. Nirenberg, Lectures on linear partial differential equations, CBMS.: Regional Conference Series in Mathematics, 17 (1973), 1-58. Google Scholar

[22]

L. Hörmander, The analysis of linear partial differential operators III: Pseudo-Differential Operators, Springer-Verlag, Berlin Heidelberg, 1985. Google Scholar

[23]

M. W. Wong, An introduction to pseudo-differential operators, World Scientific Publishing, Singapore, 1999. Google Scholar

[24]

A. Majda and S. Osher, Reflection of singularities at the boundary, Comm. Pure Appl. Math., 28 (1975), 479-499. Google Scholar

[25]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651. Google Scholar

[26]

C. Clason, B. Kaltenbacher and S. Veljovic, Boundary optimal control of the Westervelt and the Kuznetsov equations, J. Math. Anal. Appl., 356 (2009), 738-751. Google Scholar

[27]

T. Ha-Duong and P. Joly, On the Stability Analysis of Boundary Conditions for the Wave Equation by Energy Methods. Part I: The Homogeneous Case, Math. Comp., 62 (1994), 539-563. Google Scholar

[28]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation., Discret. Contin. Dyn. S., 2 (2009), 503-525. Google Scholar

[29]

B. Kaltenbacher and I. Lasiecka, Well-Posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, in The Proceedings of the 8th AIMS Conference, (2011), 763-773. Google Scholar

[30]

I. Shevchenko and B. Wohlmuth, Self-adapting absorbing boundary conditions for the wave equation, Wave Motion, 49 (2012), 461-473. Google Scholar

[31]

T. Hughes, The finite element method: linear static and dynamic finite element analysis, Dover Publications, 2000. Google Scholar

[32]

B. Kaltenbacher and I. Shevchenko, Absorbing boundary conditions for the Westervelt equation,, arXiv:1408.5031, ().   Google Scholar

show all references

References:
[1]

P. J. Westervelt, Parametric acoustic array, J. Acoust. Soc. Am., 35 (1963), 535-537. Google Scholar

[2]

M. Averkiou and R. Cleveland, Modeling of an electrohydraulic lithotripter with the KZK equation, J. Acoust. Soc. Am., 106 (1999), 102-112. Google Scholar

[3]

C. Le Floch and M. Fink, Ultrasonic mapping of temperature in hyperthermia: the thermal lens effect, in Proceedings of 1997 IEEE Ultrasonics Symposium, (1997), 1301-1304. Google Scholar

[4]

C. Simon, P. VanBaren and E. Ebbini, Two-dimensional temperature estimation using diagnostic ultrasound, IEEE Trans. Ultrason. Ferr., 45 (1998), 1088-1099. Google Scholar

[5]

M. Pernot, K. Waters, J. Bercoff, M. Tanter and M. Fink, Reduction of the thermo-acoustic lens effect during ultrasound-based temperature estimation, in Proceedings of 2002 IEEE Ultrasonics Symposium, (2002), 1447-1450. Google Scholar

[6]

C. Le Floch, M. Tanter and M. Fink, Self-defocusing in ultrasonic hyperthermia: Experiment and simulation, Appl. Phys. Lett., 74 (1999), 3062-3064. Google Scholar

[7]

I. Hallaj, R. Cleveland and K. Hynynen, Simulations of the thermo-acoustic lens effect during focused ultrasound surgery, J. Acoust. Soc. Am., 109 (2001), 2245-2253. Google Scholar

[8]

C. Connor and K. Hynynen, Bio-acoustic thermal lensing and nonlinear propagation in focused ultrasound surgery using large focal spots: a parametric study, Phys. Med. Biol., 47 (2002), 1911-1928. Google Scholar

[9]

S. Tsynkov, Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math., 27 (1998), 465-532. Google Scholar

[10]

T. Hagstrom, New results on absorbing layers and radiation boundary conditions, in Topics in computational wave propagation. Direct and inverse problems. Lect. Notes Comput. Sci. Eng. (M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynne), Springer-Verlag, (2003), 1-42. Google Scholar

[11]

D. Givoli, High-order local non-reflecting boundary conditions: a review, Wave motion, 39 (2004), 319-326. Google Scholar

[12]

D. Givoli, Computational absorbing boundaries, in Computational Acoustics of Noise Propagation in Fluids (S. Marburg and B. Nolte), Springer-Verlag, (2008), 145-166. Google Scholar

[13]

B. Engquist and A. Majda, Radiation Boundary Conditions for Acoustic and Elastic Wave Calculations, Comm. Pure Appl. Math., 32 (1979), 313-357. Google Scholar

[14]

E. Bécache, D. Givoli and T. Hagstrom, High-order absorbing boundary conditions for anisotropic and convective wave equations, J. Comput. Phys., 229 (2010), 1099-1129. Google Scholar

[15]

G. W. Hedstrom, Nonreflecting Boundary Conditions for Nonlinear Hyperbolic Systems, J. Comput. Phys., 30 (1979), 222-237. Google Scholar

[16]

J. Szeftel, Absorbing boundary conditions for nonlinear scalar partial differential equations, Comput. Method. Appl. M., 195 (2006), 3760-3775. Google Scholar

[17]

J. Zhang, Z. Xu and X. Wu, Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations: Two-dimensional case, Phys. Rev. E, 79 (2009), 046711-1-046711-8. Google Scholar

[18]

R. R. Paz, M. A. Storti and L. Garelli, Absorbing Boundary Condition for Nonlinear Hyperbolic Partial Differential Equations with Unknown Riemann Invariants, Fluid Mechanics (C), XXVIII (2009), 1593-1620. Google Scholar

[19]

J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Commun. Pure Appl. Math., 18 (1965), 269-305. Google Scholar

[20]

L. Hörmander, Pseudo-differential operators, Commun. Pure Appl. Math., 18 (1965), 501-517. Google Scholar

[21]

L. Nirenberg, Lectures on linear partial differential equations, CBMS.: Regional Conference Series in Mathematics, 17 (1973), 1-58. Google Scholar

[22]

L. Hörmander, The analysis of linear partial differential operators III: Pseudo-Differential Operators, Springer-Verlag, Berlin Heidelberg, 1985. Google Scholar

[23]

M. W. Wong, An introduction to pseudo-differential operators, World Scientific Publishing, Singapore, 1999. Google Scholar

[24]

A. Majda and S. Osher, Reflection of singularities at the boundary, Comm. Pure Appl. Math., 28 (1975), 479-499. Google Scholar

[25]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31 (1977), 629-651. Google Scholar

[26]

C. Clason, B. Kaltenbacher and S. Veljovic, Boundary optimal control of the Westervelt and the Kuznetsov equations, J. Math. Anal. Appl., 356 (2009), 738-751. Google Scholar

[27]

T. Ha-Duong and P. Joly, On the Stability Analysis of Boundary Conditions for the Wave Equation by Energy Methods. Part I: The Homogeneous Case, Math. Comp., 62 (1994), 539-563. Google Scholar

[28]

B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for the Westervelt equation., Discret. Contin. Dyn. S., 2 (2009), 503-525. Google Scholar

[29]

B. Kaltenbacher and I. Lasiecka, Well-Posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions, in The Proceedings of the 8th AIMS Conference, (2011), 763-773. Google Scholar

[30]

I. Shevchenko and B. Wohlmuth, Self-adapting absorbing boundary conditions for the wave equation, Wave Motion, 49 (2012), 461-473. Google Scholar

[31]

T. Hughes, The finite element method: linear static and dynamic finite element analysis, Dover Publications, 2000. Google Scholar

[32]

B. Kaltenbacher and I. Shevchenko, Absorbing boundary conditions for the Westervelt equation,, arXiv:1408.5031, ().   Google Scholar

[1]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[2]

Michael Renardy. A backward uniqueness result for the wave equation with absorbing boundary conditions. Evolution Equations & Control Theory, 2015, 4 (3) : 347-353. doi: 10.3934/eect.2015.4.347

[3]

Rainer Brunnhuber, Barbara Kaltenbacher. Well-posedness and asymptotic behavior of solutions for the Blackstock-Crighton-Westervelt equation. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4515-4535. doi: 10.3934/dcds.2014.34.4515

[4]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021205

[5]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[6]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[7]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[8]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[9]

Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307

[10]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[11]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[12]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[13]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[14]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[15]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[16]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[17]

George Avalos. Concerning the well-posedness of a nonlinearly coupled semilinear wave and beam--like equation. Discrete & Continuous Dynamical Systems, 1997, 3 (2) : 265-288. doi: 10.3934/dcds.1997.3.265

[18]

Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators. Communications on Pure & Applied Analysis, 2015, 14 (2) : 627-636. doi: 10.3934/cpaa.2015.14.627

[19]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[20]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2039-2064. doi: 10.3934/cpaa.2021057

 Impact Factor: 

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]