2015, 2015(special): 1019-1024. doi: 10.3934/proc.2015.1019

Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

Received  August 2014 Revised  August 2015 Published  November 2015

Nonlinear Schrödinger equations with inverse-square potentials are considered in space dimension $N=2$. Stricharz estimates for (NLS)a are shown by Burq, Planchon, Stalker and Tahvildar-Zadeh [1] even when $N=2$. Here there seems not to be the study of solvability of (NLS)a when dimension is two. By virtue of the Hardy inequality the solvability is proved in Okazawa-Suzuki-Yokota, [3,4] if $N\ge 3$. Although strongly singular potential $a|x|^{-2}$ is available and the energy space is not exactly $H^{1}$ in (NLS)a, we can apply the energy methods established by Okazawa-Suzuki-Yokota [4].
Citation: Toshiyuki Suzuki. Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space. Conference Publications, 2015, 2015 (special) : 1019-1024. doi: 10.3934/proc.2015.1019
References:
[1]

N.Burq, F.Planchon, J.Stalker, A.S.Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger, equations with the inverse-square potential, 203 (2003), 519.   Google Scholar

[2]

T.Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations,, Nonlinear Anal., 14 (1990), 765.   Google Scholar

[3]

N.Okazawa, T.Suzuki, T.Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials,, Appl. Anal., 91 (2012), 1605.   Google Scholar

[4]

N.Okazawa, T.Suzuki, T.Yokota, Energy methods for abstract nonlinear Schrödinger equations,, Evol. Equ. Control Theory, 1 (2012), 337.   Google Scholar

[5]

T.Suzuki, Energy methods for Hartree type equation with inverse-square potentials,, Evol. Equ. Control Theory, 2 (2013), 531.   Google Scholar

[6]

T.Suzuki, Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains,, Math. Bohemica, 139 (2014), 231.   Google Scholar

[7]

T.Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities,, Funkcial. Ekvac., ().   Google Scholar

[8]

L.Wei, Z.Feng, Isolated singularity for semilinear elliptic equations,, Discrete and Continuous Dynamical System-A, 35 (2015), 3239.   Google Scholar

show all references

References:
[1]

N.Burq, F.Planchon, J.Stalker, A.S.Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger, equations with the inverse-square potential, 203 (2003), 519.   Google Scholar

[2]

T.Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations,, Nonlinear Anal., 14 (1990), 765.   Google Scholar

[3]

N.Okazawa, T.Suzuki, T.Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials,, Appl. Anal., 91 (2012), 1605.   Google Scholar

[4]

N.Okazawa, T.Suzuki, T.Yokota, Energy methods for abstract nonlinear Schrödinger equations,, Evol. Equ. Control Theory, 1 (2012), 337.   Google Scholar

[5]

T.Suzuki, Energy methods for Hartree type equation with inverse-square potentials,, Evol. Equ. Control Theory, 2 (2013), 531.   Google Scholar

[6]

T.Suzuki, Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains,, Math. Bohemica, 139 (2014), 231.   Google Scholar

[7]

T.Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities,, Funkcial. Ekvac., ().   Google Scholar

[8]

L.Wei, Z.Feng, Isolated singularity for semilinear elliptic equations,, Discrete and Continuous Dynamical System-A, 35 (2015), 3239.   Google Scholar

[1]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[2]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[3]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[6]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[10]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[11]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[16]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[17]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[18]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[19]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

 Impact Factor: 

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]