2015, 2015(special): 1041-1049. doi: 10.3934/proc.2015.1041

Optimal portfolios based on weakly dependent data

1. 

Colledge of Science and Technology, Nihon University, Narashino-dai, Funabashi 274-8501

2. 

Center for Medical Education and Sciences, Yamanashi University, Shimogato, Chuo 409-3898, Japan

3. 

Department of Mathematics, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557

4. 

Department of Mathematics, Yokohama National University, Hodogaya, Yokohama 240-8501, Japan

Received  September 2014 Revised  March 2015 Published  November 2015

Let $\{\xi_k, k=1,2, \ldots\}$ be a strictly stationary sequence of centered $d$-dimensional random vectors satisfying the strong mixing condition. Using $\{\xi_k\}$, we consider a stochastic difference equation with a random volatility composed by $d$ stocks and a random trend and show a convergence theorem. In the one-dimensional case, the solution of this difference equation converges almost surely to a Black-Scholes type model. The purpose of this paper is to extend the results to multi-dimensional cases. Using the result, we obtain an approximations of $d$ stocks prices models with random volatilities. We also give examples of optimal portfolios for the models.
Citation: Hiroshi Takahashi, Tatsuhiko Saigo, Shuya Kanagawa, Ken-ichi Yoshihara. Optimal portfolios based on weakly dependent data. Conference Publications, 2015, 2015 (special) : 1041-1049. doi: 10.3934/proc.2015.1041
References:
[1]

J. Komlòs, P. Major and G. Tusnàdy, An approximation of partial sums of independent RV's and the sample DF.I,, Z. Wahrsch. Verw. Gebiete., 32 (1975), 111. Google Scholar

[2]

R. Korn and E. Korn, "Option pricing and portfolio optimization'',, American Mathematical Society, (2001). Google Scholar

[3]

W. Liu and Z. Lin, Strong approximation for a class of stationary processes, Stoch. Proc. Appl., 119 (2009), 249. Google Scholar

[4]

H. Takahashi, S. Kanagawa and K. Yoshihara, Asymptotic behavior of solutions of some difference equations defined by weakly dependent random vectors., Stoch. Anal. Appl., 33 (2015), 740. Google Scholar

[5]

K. Yoshihara, Asymptotic behavior of solutions of Black-Scholes type equations based on weakly dependent random variables,, Yokohama Math. J., 58 (2012), 1. Google Scholar

show all references

References:
[1]

J. Komlòs, P. Major and G. Tusnàdy, An approximation of partial sums of independent RV's and the sample DF.I,, Z. Wahrsch. Verw. Gebiete., 32 (1975), 111. Google Scholar

[2]

R. Korn and E. Korn, "Option pricing and portfolio optimization'',, American Mathematical Society, (2001). Google Scholar

[3]

W. Liu and Z. Lin, Strong approximation for a class of stationary processes, Stoch. Proc. Appl., 119 (2009), 249. Google Scholar

[4]

H. Takahashi, S. Kanagawa and K. Yoshihara, Asymptotic behavior of solutions of some difference equations defined by weakly dependent random vectors., Stoch. Anal. Appl., 33 (2015), 740. Google Scholar

[5]

K. Yoshihara, Asymptotic behavior of solutions of Black-Scholes type equations based on weakly dependent random variables,, Yokohama Math. J., 58 (2012), 1. Google Scholar

[1]

Erik Ekström, Johan Tysk. A boundary point lemma for Black-Scholes type operators. Communications on Pure & Applied Analysis, 2006, 5 (3) : 505-514. doi: 10.3934/cpaa.2006.5.505

[2]

Kais Hamza, Fima C. Klebaner. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 829-834. doi: 10.3934/dcdsb.2006.6.829

[3]

Junkee Jeon, Jehan Oh. (1+2)-dimensional Black-Scholes equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (2) : 699-714. doi: 10.3934/cpaa.2020032

[4]

Rodrigue Gnitchogna Batogna, Abdon Atangana. Generalised class of Time Fractional Black Scholes equation and numerical analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 435-445. doi: 10.3934/dcdss.2019028

[5]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[6]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[7]

Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343

[8]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control & Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[9]

Chao Zhang, Jingjing Wang, Naihua Xiu. Robust and sparse portfolio model for index tracking. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1001-1015. doi: 10.3934/jimo.2018082

[10]

Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136

[11]

Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations & Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645

[12]

Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou. Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 1033-1054. doi: 10.3934/mbe.2018046

[13]

Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070

[14]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[15]

Seiji Ukai, Tong Yang, Huijiang Zhao. Exterior Problem of Boltzmann Equation with Temperature Difference. Communications on Pure & Applied Analysis, 2009, 8 (1) : 473-491. doi: 10.3934/cpaa.2009.8.473

[16]

Yanqin Bai, Yudan Wei, Qian Li. An optimal trade-off model for portfolio selection with sensitivity of parameters. Journal of Industrial & Management Optimization, 2017, 13 (2) : 947-965. doi: 10.3934/jimo.2016055

[17]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[18]

Zhifeng Dai, Huan Zhu, Fenghua Wen. Two nonparametric approaches to mean absolute deviation portfolio selection model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019054

[19]

Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019094

[20]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

 Impact Factor: 

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

[Back to Top]