2015, 2015(special): 1050-1059. doi: 10.3934/proc.2015.1050

Imperfect bifurcations via topological methods in superlinear indefinite problems

1. 

Centre d'Analyse et de Mathématiques Sociales, École des Hautes Études en Sciences Sociales, 190-198 avenue de France, 75244 Paris Cedex 13, France

Received  September 2014 Revised  March 2015 Published  November 2015

In [5] the structure of the bifurcation diagrams of a class of superlinear indefinite problems with a symmetric weight was ascertained, showing that they consist of a primary branch and secondary loops bifurcating from it. In [4] it has been proved that, when the weight is asymmetric, the bifurcation diagrams are no longer connected since parts of the primary branch and loops of the symmetric case form an arbitrarily high number of isolas. In this work we give a deeper insight on this phenomenon, studying how the secondary bifurcations break as the weight is perturbed from the symmetric situation. Our proofs rely on the approach of [5,4], i.e. on the construction of certain Poincaré maps and the study of how they vary as some of the parameters of the problems change, obtaining in this way the bifurcation diagrams.
Citation: Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050
References:
[1]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321.   Google Scholar

[2]

P. Liu, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations,, J. Funct. Anal., 251 (2007), 573.   Google Scholar

[3]

J. López-Gómez, M. Molina-Meyer and A. Tellini, Intricate bifurcation diagrams for a class of one-dimensional superlinear indefinite problems of interest in population dynamics,, DCDS Supplement 2013 Proceedings of the 9th AIMS International Conference, (2013), 515.   Google Scholar

[4]

J. López-Gómez and A. Tellini, Generating an arbitrarily large number of isolas in a superlinear indefinite problem,, Nonlinear Anal. - Theory Methods Appl., 108 (2014), 223.   Google Scholar

[5]

J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems,, Commun. Pure Appl. Anal., 13 (2014), 1.   Google Scholar

show all references

References:
[1]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321.   Google Scholar

[2]

P. Liu, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations,, J. Funct. Anal., 251 (2007), 573.   Google Scholar

[3]

J. López-Gómez, M. Molina-Meyer and A. Tellini, Intricate bifurcation diagrams for a class of one-dimensional superlinear indefinite problems of interest in population dynamics,, DCDS Supplement 2013 Proceedings of the 9th AIMS International Conference, (2013), 515.   Google Scholar

[4]

J. López-Gómez and A. Tellini, Generating an arbitrarily large number of isolas in a superlinear indefinite problem,, Nonlinear Anal. - Theory Methods Appl., 108 (2014), 223.   Google Scholar

[5]

J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems,, Commun. Pure Appl. Anal., 13 (2014), 1.   Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[4]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[8]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[9]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[10]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[11]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[12]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[13]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[14]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[17]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[18]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[19]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

 Impact Factor: 

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]