2015, 2015(special): 1079-1088. doi: 10.3934/proc.2015.1079

Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

Received  July 2014 Revised  February 2015 Published  November 2015

This paper is concerned with a system of nonlinear heat equations with constraints coupled with Navier--Stokes equations in two-dimensional domains. In 2012, Sobajima, the author and Yokota proved existence and uniqueness of solutions to the system with heat equations with the linear diffusion term $\Delta\theta$ and the nonlinear term $|\theta|^{q-1}\theta$. Recently, the author generalized the result for the equation with the $p$-Laplace operator $\Delta p$ and the logistic nonlinear term $|\theta|^{q-1}\theta - \alpha\theta$. This paper gives an existence result for the equation with $\Delta p$ and the more general nonlinear term $h(x,\theta)-\alpha\theta$ depending on the spacial variable $x$.
Citation: Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079
References:
[1]

T. Fukao and M. Kubo, Time-dependent double obstacle problem in thermohydraulics,, in Nonlinear phenomena with energy dissipation, Vol.29 (2008), 73.   Google Scholar

[2]

N. Okazawa, An application of the perturbation theorem for $m$-accretive operators. II,, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 10.   Google Scholar

[3]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.   Google Scholar

[4]

M. Sobajima, Y. Tsuzuki and T. Yokota, Existence and uniqueness of solutions to nonlinear heat equations with constraints coupled with Navier-Stokes equations in 2D domains,, Adv. Math. Sci. Appl., 22 (2012), 577.   Google Scholar

[5]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Amsterdam-New York, (1977).   Google Scholar

[6]

Y. Tsuzuki, Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains,, Evol. Equ. Control Theory, 3 (2014), 191.   Google Scholar

show all references

References:
[1]

T. Fukao and M. Kubo, Time-dependent double obstacle problem in thermohydraulics,, in Nonlinear phenomena with energy dissipation, Vol.29 (2008), 73.   Google Scholar

[2]

N. Okazawa, An application of the perturbation theorem for $m$-accretive operators. II,, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 10.   Google Scholar

[3]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.   Google Scholar

[4]

M. Sobajima, Y. Tsuzuki and T. Yokota, Existence and uniqueness of solutions to nonlinear heat equations with constraints coupled with Navier-Stokes equations in 2D domains,, Adv. Math. Sci. Appl., 22 (2012), 577.   Google Scholar

[5]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Amsterdam-New York, (1977).   Google Scholar

[6]

Y. Tsuzuki, Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains,, Evol. Equ. Control Theory, 3 (2014), 191.   Google Scholar

[1]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[2]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[3]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[4]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[5]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[6]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[7]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[8]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[9]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

[10]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[11]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[12]

Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477

[13]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[14]

Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373

[15]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[16]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[17]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[18]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[19]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[20]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

 Impact Factor: 

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]