2015, 2015(special): 1079-1088. doi: 10.3934/proc.2015.1079

Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

Received  July 2014 Revised  February 2015 Published  November 2015

This paper is concerned with a system of nonlinear heat equations with constraints coupled with Navier--Stokes equations in two-dimensional domains. In 2012, Sobajima, the author and Yokota proved existence and uniqueness of solutions to the system with heat equations with the linear diffusion term $\Delta\theta$ and the nonlinear term $|\theta|^{q-1}\theta$. Recently, the author generalized the result for the equation with the $p$-Laplace operator $\Delta p$ and the logistic nonlinear term $|\theta|^{q-1}\theta - \alpha\theta$. This paper gives an existence result for the equation with $\Delta p$ and the more general nonlinear term $h(x,\theta)-\alpha\theta$ depending on the spacial variable $x$.
Citation: Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079
References:
[1]

T. Fukao and M. Kubo, Time-dependent double obstacle problem in thermohydraulics,, in Nonlinear phenomena with energy dissipation, Vol.29 (2008), 73.   Google Scholar

[2]

N. Okazawa, An application of the perturbation theorem for $m$-accretive operators. II,, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 10.   Google Scholar

[3]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.   Google Scholar

[4]

M. Sobajima, Y. Tsuzuki and T. Yokota, Existence and uniqueness of solutions to nonlinear heat equations with constraints coupled with Navier-Stokes equations in 2D domains,, Adv. Math. Sci. Appl., 22 (2012), 577.   Google Scholar

[5]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Amsterdam-New York, (1977).   Google Scholar

[6]

Y. Tsuzuki, Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains,, Evol. Equ. Control Theory, 3 (2014), 191.   Google Scholar

show all references

References:
[1]

T. Fukao and M. Kubo, Time-dependent double obstacle problem in thermohydraulics,, in Nonlinear phenomena with energy dissipation, Vol.29 (2008), 73.   Google Scholar

[2]

N. Okazawa, An application of the perturbation theorem for $m$-accretive operators. II,, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 10.   Google Scholar

[3]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.   Google Scholar

[4]

M. Sobajima, Y. Tsuzuki and T. Yokota, Existence and uniqueness of solutions to nonlinear heat equations with constraints coupled with Navier-Stokes equations in 2D domains,, Adv. Math. Sci. Appl., 22 (2012), 577.   Google Scholar

[5]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Amsterdam-New York, (1977).   Google Scholar

[6]

Y. Tsuzuki, Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains,, Evol. Equ. Control Theory, 3 (2014), 191.   Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[3]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[4]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[5]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[6]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[9]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[10]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[11]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[12]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[13]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[14]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[15]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[16]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[17]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[18]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[19]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[20]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

 Impact Factor: 

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]