2015, 2015(special): 1079-1088. doi: 10.3934/proc.2015.1079

Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

Received  July 2014 Revised  February 2015 Published  November 2015

This paper is concerned with a system of nonlinear heat equations with constraints coupled with Navier--Stokes equations in two-dimensional domains. In 2012, Sobajima, the author and Yokota proved existence and uniqueness of solutions to the system with heat equations with the linear diffusion term $\Delta\theta$ and the nonlinear term $|\theta|^{q-1}\theta$. Recently, the author generalized the result for the equation with the $p$-Laplace operator $\Delta p$ and the logistic nonlinear term $|\theta|^{q-1}\theta - \alpha\theta$. This paper gives an existence result for the equation with $\Delta p$ and the more general nonlinear term $h(x,\theta)-\alpha\theta$ depending on the spacial variable $x$.
Citation: Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079
References:
[1]

T. Fukao and M. Kubo, Time-dependent double obstacle problem in thermohydraulics, in Nonlinear phenomena with energy dissipation, GAKUTO Internat. Ser. Math. Sci. Appl., Vol.29, Gakkōtosho, (2008), 73-92.  Google Scholar

[2]

N. Okazawa, An application of the perturbation theorem for $m$-accretive operators. II, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 10-13.  Google Scholar

[3]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  Google Scholar

[4]

M. Sobajima, Y. Tsuzuki and T. Yokota, Existence and uniqueness of solutions to nonlinear heat equations with constraints coupled with Navier-Stokes equations in 2D domains, Adv. Math. Sci. Appl., 22 (2012), 577-596.  Google Scholar

[5]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Amsterdam-New York, North-Holland, 1977.  Google Scholar

[6]

Y. Tsuzuki, Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains, Evol. Equ. Control Theory, 3 (2014), 191-206.  Google Scholar

show all references

References:
[1]

T. Fukao and M. Kubo, Time-dependent double obstacle problem in thermohydraulics, in Nonlinear phenomena with energy dissipation, GAKUTO Internat. Ser. Math. Sci. Appl., Vol.29, Gakkōtosho, (2008), 73-92.  Google Scholar

[2]

N. Okazawa, An application of the perturbation theorem for $m$-accretive operators. II, Proc. Japan Acad. Ser. A Math. Sci., 60 (1984), 10-13.  Google Scholar

[3]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  Google Scholar

[4]

M. Sobajima, Y. Tsuzuki and T. Yokota, Existence and uniqueness of solutions to nonlinear heat equations with constraints coupled with Navier-Stokes equations in 2D domains, Adv. Math. Sci. Appl., 22 (2012), 577-596.  Google Scholar

[5]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Amsterdam-New York, North-Holland, 1977.  Google Scholar

[6]

Y. Tsuzuki, Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains, Evol. Equ. Control Theory, 3 (2014), 191-206.  Google Scholar

[1]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[2]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[3]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[4]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[5]

Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 1191-1205. doi: 10.3934/era.2020065

[6]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[7]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[8]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[9]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[10]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[11]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

[12]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Dead cores and bursts for p-Laplacian elliptic equations with weights. Conference Publications, 2007, 2007 (Special) : 191-200. doi: 10.3934/proc.2007.2007.191

[13]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

[14]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2117-2138. doi: 10.3934/cpaa.2021060

[15]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[16]

Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477

[17]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[18]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[19]

Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373

[20]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

 Impact Factor: 

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]