\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Direct scattering of AKNS systems with $L^2$ potentials

Abstract / Introduction Related Papers Cited by
  • In this article the Jost solutions of the AKNS system with suitably weighted $L^2$ potential are constructed as Hardy space perturbations of their space-infinity asymptotics. The reflection coefficients are proven to be $L^2$-functions when the transmission coefficients are $L^\infty$-functions.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, The inverse scattering transform - Fourier analysis for nonlinear problems, Studies in Appl. Math., 53 (1974), 249-315.

    [2]

    M.J. Ablowitz, B. Prinari and A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, Cambridge University Press, Cambridge, 2004.

    [3]

    F. Demontis, Matrix Zakharov-Shabat System and Inverse Scattering Transform, Lambert Academic Publishing, Saarbrücken, 2012.

    [4]

    F. Demontis and C. van der Mee, Scattering operators for matrix Zakharov-Shabat systems, Integral Equations and Operator Theory, 62 (2008), 517-540.

    [5]

    F. Demontis and C. van der Mee, Characterization of scattering data for the matrix Zakharov-Shabat system, Acta Appl. Math., 131 (2014), 29-47.

    [6]

    L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer, New York, 1987.

    [7]

    K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.

    [8]

    M. Klaus, On the eigenvalues of the Lax operator for the matrix-valued AKNS system, in Topics in Operator Theory. II. Systems and Mathematical Physics, Birkhäuser, Basel, 2010.

    [9]

    M. Klaus and C. van der Mee, Wave operators for the matrix Zakharov-Shabat system, J. Mathematical Phys., 51 (2010), 053503.

    [10]

    V.A. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel and Boston, 1986.

    [11]

    A. Melin, Operator methods for inverse scattering on the real line, Commun. Partial Differential Equations, 10 (1985), 677-766.

    [12]

    S.P. Novikov, S.V. Manakov, L.B. Pitaevskii and V.E. Zakharov, Theory of Solitons. The Inverse Scattering Method, Plenum Press, New York, 1984.

    [13]

    C. van der Mee, Nonlinear Evolution Models of Integrable Type, SIMAI e-Lecture Notes 11, SIMAI, Torino, 2013.

    [14]

    C. van der Mee, Time-evolution-proof scattering data for the focusing and defocusing Zakharov-Shabat systems, J. Nonlinear Math. Phys., 21 (2014), 265-277.

    [15]

    J. Villarroel, M.J. Ablowitz and B. Prinari, Solvability of the direct and inverse problems for the nonlinear Schrödinger equation, Acta Appl. Math., 87 (2005), 245-280.

    [16]

    V. E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, 34 (1972), 62-69.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(156) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return