• Previous Article
    The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori
  • PROC Home
  • This Issue
  • Next Article
    Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains
2015, 2015(special): 1089-1097. doi: 10.3934/proc.2015.1089

Direct scattering of AKNS systems with $L^2$ potentials

1. 

Dip. Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari, Italy

Received  September 2014 Revised  February 2015 Published  November 2015

In this article the Jost solutions of the AKNS system with suitably weighted $L^2$ potential are constructed as Hardy space perturbations of their space-infinity asymptotics. The reflection coefficients are proven to be $L^2$-functions when the transmission coefficients are $L^\infty$-functions.
Citation: Cornelis van der Mee. Direct scattering of AKNS systems with $L^2$ potentials. Conference Publications, 2015, 2015 (special) : 1089-1097. doi: 10.3934/proc.2015.1089
References:
[1]

M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, The inverse scattering transform - Fourier analysis for nonlinear problems,, Studies in Appl. Math., 53 (1974), 249. Google Scholar

[2]

M.J. Ablowitz, B. Prinari and A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems,, Cambridge University Press, (2004). Google Scholar

[3]

F. Demontis, Matrix Zakharov-Shabat System and Inverse Scattering Transform,, Lambert Academic Publishing, (2012). Google Scholar

[4]

F. Demontis and C. van der Mee, Scattering operators for matrix Zakharov-Shabat systems,, Integral Equations and Operator Theory, 62 (2008), 517. Google Scholar

[5]

F. Demontis and C. van der Mee, Characterization of scattering data for the matrix Zakharov-Shabat system,, Acta Appl. Math., 131 (2014), 29. Google Scholar

[6]

L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons,, Springer, (1987). Google Scholar

[7]

K. Hoffman, Banach Spaces of Analytic Functions,, Prentice-Hall, (1962). Google Scholar

[8]

M. Klaus, On the eigenvalues of the Lax operator for the matrix-valued AKNS system,, in Topics in Operator Theory. II. Systems and Mathematical Physics, (2010). Google Scholar

[9]

M. Klaus and C. van der Mee, Wave operators for the matrix Zakharov-Shabat system,, J. Mathematical Phys., 51 (2010). Google Scholar

[10]

V.A. Marchenko, Sturm-Liouville Operators and Applications,, Birkhäuser, (1986). Google Scholar

[11]

A. Melin, Operator methods for inverse scattering on the real line,, Commun. Partial Differential Equations, 10 (1985), 677. Google Scholar

[12]

S.P. Novikov, S.V. Manakov, L.B. Pitaevskii and V.E. Zakharov, Theory of Solitons. The Inverse Scattering Method,, Plenum Press, (1984). Google Scholar

[13]

C. van der Mee, Nonlinear Evolution Models of Integrable Type,, SIMAI e-Lecture Notes 11, 11 (2013). Google Scholar

[14]

C. van der Mee, Time-evolution-proof scattering data for the focusing and defocusing Zakharov-Shabat systems,, J. Nonlinear Math. Phys., 21 (2014), 265. Google Scholar

[15]

J. Villarroel, M.J. Ablowitz and B. Prinari, Solvability of the direct and inverse problems for the nonlinear Schrödinger equation,, Acta Appl. Math., 87 (2005), 245. Google Scholar

[16]

V. E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media,, Soviet Physics JETP, 34 (1972), 62. Google Scholar

show all references

References:
[1]

M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, The inverse scattering transform - Fourier analysis for nonlinear problems,, Studies in Appl. Math., 53 (1974), 249. Google Scholar

[2]

M.J. Ablowitz, B. Prinari and A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems,, Cambridge University Press, (2004). Google Scholar

[3]

F. Demontis, Matrix Zakharov-Shabat System and Inverse Scattering Transform,, Lambert Academic Publishing, (2012). Google Scholar

[4]

F. Demontis and C. van der Mee, Scattering operators for matrix Zakharov-Shabat systems,, Integral Equations and Operator Theory, 62 (2008), 517. Google Scholar

[5]

F. Demontis and C. van der Mee, Characterization of scattering data for the matrix Zakharov-Shabat system,, Acta Appl. Math., 131 (2014), 29. Google Scholar

[6]

L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons,, Springer, (1987). Google Scholar

[7]

K. Hoffman, Banach Spaces of Analytic Functions,, Prentice-Hall, (1962). Google Scholar

[8]

M. Klaus, On the eigenvalues of the Lax operator for the matrix-valued AKNS system,, in Topics in Operator Theory. II. Systems and Mathematical Physics, (2010). Google Scholar

[9]

M. Klaus and C. van der Mee, Wave operators for the matrix Zakharov-Shabat system,, J. Mathematical Phys., 51 (2010). Google Scholar

[10]

V.A. Marchenko, Sturm-Liouville Operators and Applications,, Birkhäuser, (1986). Google Scholar

[11]

A. Melin, Operator methods for inverse scattering on the real line,, Commun. Partial Differential Equations, 10 (1985), 677. Google Scholar

[12]

S.P. Novikov, S.V. Manakov, L.B. Pitaevskii and V.E. Zakharov, Theory of Solitons. The Inverse Scattering Method,, Plenum Press, (1984). Google Scholar

[13]

C. van der Mee, Nonlinear Evolution Models of Integrable Type,, SIMAI e-Lecture Notes 11, 11 (2013). Google Scholar

[14]

C. van der Mee, Time-evolution-proof scattering data for the focusing and defocusing Zakharov-Shabat systems,, J. Nonlinear Math. Phys., 21 (2014), 265. Google Scholar

[15]

J. Villarroel, M.J. Ablowitz and B. Prinari, Solvability of the direct and inverse problems for the nonlinear Schrödinger equation,, Acta Appl. Math., 87 (2005), 245. Google Scholar

[16]

V. E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media,, Soviet Physics JETP, 34 (1972), 62. Google Scholar

[1]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[2]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[3]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[4]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[5]

Matti Lassas, Teemu Saksala, Hanming Zhou. Reconstruction of a compact manifold from the scattering data of internal sources. Inverse Problems & Imaging, 2018, 12 (4) : 993-1031. doi: 10.3934/ipi.2018042

[6]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. On small data scattering of Hartree equations with short-range interaction. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1809-1823. doi: 10.3934/cpaa.2016016

[7]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[8]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[9]

Victor Isakov. On uniqueness of obstacles and boundary conditions from restricted dynamical and scattering data. Inverse Problems & Imaging, 2008, 2 (1) : 151-165. doi: 10.3934/ipi.2008.2.151

[10]

Changhun Yang. Scattering results for Dirac Hartree-type equations with small initial data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1711-1734. doi: 10.3934/cpaa.2019081

[11]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems & Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[12]

Anudeep Kumar Arora. Scattering of radial data in the focusing NLS and generalized Hartree equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6643-6668. doi: 10.3934/dcds.2019289

[13]

Paschalis Karageorgis. Small-data scattering for nonlinear waves with potential and initial data of critical decay. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 87-106. doi: 10.3934/dcds.2006.16.87

[14]

Liqiang Zhu, Ying-Cheng Lai, Frank C. Hoppensteadt, Jiping He. Characterization of Neural Interaction During Learning and Adaptation from Spike-Train Data. Mathematical Biosciences & Engineering, 2005, 2 (1) : 1-23. doi: 10.3934/mbe.2005.2.1

[15]

Jing Lu, Yifei Wu. Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1641-1670. doi: 10.3934/cpaa.2015.14.1641

[16]

Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems & Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239

[17]

Yanfang Gao, Zhiyong Wang. Minimal mass non-scattering solutions of the focusing L2-critical Hartree equations with radial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1979-2007. doi: 10.3934/dcds.2017084

[18]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[19]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[20]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

 Impact Factor: 

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]