• Previous Article
    The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori
  • PROC Home
  • This Issue
  • Next Article
    Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains
2015, 2015(special): 1089-1097. doi: 10.3934/proc.2015.1089

Direct scattering of AKNS systems with $L^2$ potentials

1. 

Dip. Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari, Italy

Received  September 2014 Revised  February 2015 Published  November 2015

In this article the Jost solutions of the AKNS system with suitably weighted $L^2$ potential are constructed as Hardy space perturbations of their space-infinity asymptotics. The reflection coefficients are proven to be $L^2$-functions when the transmission coefficients are $L^\infty$-functions.
Citation: Cornelis van der Mee. Direct scattering of AKNS systems with $L^2$ potentials. Conference Publications, 2015, 2015 (special) : 1089-1097. doi: 10.3934/proc.2015.1089
References:
[1]

M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, The inverse scattering transform - Fourier analysis for nonlinear problems,, Studies in Appl. Math., 53 (1974), 249.   Google Scholar

[2]

M.J. Ablowitz, B. Prinari and A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems,, Cambridge University Press, (2004).   Google Scholar

[3]

F. Demontis, Matrix Zakharov-Shabat System and Inverse Scattering Transform,, Lambert Academic Publishing, (2012).   Google Scholar

[4]

F. Demontis and C. van der Mee, Scattering operators for matrix Zakharov-Shabat systems,, Integral Equations and Operator Theory, 62 (2008), 517.   Google Scholar

[5]

F. Demontis and C. van der Mee, Characterization of scattering data for the matrix Zakharov-Shabat system,, Acta Appl. Math., 131 (2014), 29.   Google Scholar

[6]

L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons,, Springer, (1987).   Google Scholar

[7]

K. Hoffman, Banach Spaces of Analytic Functions,, Prentice-Hall, (1962).   Google Scholar

[8]

M. Klaus, On the eigenvalues of the Lax operator for the matrix-valued AKNS system,, in Topics in Operator Theory. II. Systems and Mathematical Physics, (2010).   Google Scholar

[9]

M. Klaus and C. van der Mee, Wave operators for the matrix Zakharov-Shabat system,, J. Mathematical Phys., 51 (2010).   Google Scholar

[10]

V.A. Marchenko, Sturm-Liouville Operators and Applications,, Birkhäuser, (1986).   Google Scholar

[11]

A. Melin, Operator methods for inverse scattering on the real line,, Commun. Partial Differential Equations, 10 (1985), 677.   Google Scholar

[12]

S.P. Novikov, S.V. Manakov, L.B. Pitaevskii and V.E. Zakharov, Theory of Solitons. The Inverse Scattering Method,, Plenum Press, (1984).   Google Scholar

[13]

C. van der Mee, Nonlinear Evolution Models of Integrable Type,, SIMAI e-Lecture Notes 11, 11 (2013).   Google Scholar

[14]

C. van der Mee, Time-evolution-proof scattering data for the focusing and defocusing Zakharov-Shabat systems,, J. Nonlinear Math. Phys., 21 (2014), 265.   Google Scholar

[15]

J. Villarroel, M.J. Ablowitz and B. Prinari, Solvability of the direct and inverse problems for the nonlinear Schrödinger equation,, Acta Appl. Math., 87 (2005), 245.   Google Scholar

[16]

V. E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media,, Soviet Physics JETP, 34 (1972), 62.   Google Scholar

show all references

References:
[1]

M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, The inverse scattering transform - Fourier analysis for nonlinear problems,, Studies in Appl. Math., 53 (1974), 249.   Google Scholar

[2]

M.J. Ablowitz, B. Prinari and A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems,, Cambridge University Press, (2004).   Google Scholar

[3]

F. Demontis, Matrix Zakharov-Shabat System and Inverse Scattering Transform,, Lambert Academic Publishing, (2012).   Google Scholar

[4]

F. Demontis and C. van der Mee, Scattering operators for matrix Zakharov-Shabat systems,, Integral Equations and Operator Theory, 62 (2008), 517.   Google Scholar

[5]

F. Demontis and C. van der Mee, Characterization of scattering data for the matrix Zakharov-Shabat system,, Acta Appl. Math., 131 (2014), 29.   Google Scholar

[6]

L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons,, Springer, (1987).   Google Scholar

[7]

K. Hoffman, Banach Spaces of Analytic Functions,, Prentice-Hall, (1962).   Google Scholar

[8]

M. Klaus, On the eigenvalues of the Lax operator for the matrix-valued AKNS system,, in Topics in Operator Theory. II. Systems and Mathematical Physics, (2010).   Google Scholar

[9]

M. Klaus and C. van der Mee, Wave operators for the matrix Zakharov-Shabat system,, J. Mathematical Phys., 51 (2010).   Google Scholar

[10]

V.A. Marchenko, Sturm-Liouville Operators and Applications,, Birkhäuser, (1986).   Google Scholar

[11]

A. Melin, Operator methods for inverse scattering on the real line,, Commun. Partial Differential Equations, 10 (1985), 677.   Google Scholar

[12]

S.P. Novikov, S.V. Manakov, L.B. Pitaevskii and V.E. Zakharov, Theory of Solitons. The Inverse Scattering Method,, Plenum Press, (1984).   Google Scholar

[13]

C. van der Mee, Nonlinear Evolution Models of Integrable Type,, SIMAI e-Lecture Notes 11, 11 (2013).   Google Scholar

[14]

C. van der Mee, Time-evolution-proof scattering data for the focusing and defocusing Zakharov-Shabat systems,, J. Nonlinear Math. Phys., 21 (2014), 265.   Google Scholar

[15]

J. Villarroel, M.J. Ablowitz and B. Prinari, Solvability of the direct and inverse problems for the nonlinear Schrödinger equation,, Acta Appl. Math., 87 (2005), 245.   Google Scholar

[16]

V. E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media,, Soviet Physics JETP, 34 (1972), 62.   Google Scholar

[1]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[9]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[10]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[11]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[15]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

 Impact Factor: 

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]