Advanced Search
Article Contents
Article Contents

The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori

Abstract Related Papers Cited by
  • A dissipative Hopf -- Hopf bifurcation with 2 :1 resonance are studied. A parameter dependent polynomial truncated normal form is derived. We study this truncated normal form. This system displays a large variety of behaviour both regular and chaotic solution. Existence of the periodic solutions and invariant tori of full system are proved. Analogy between dissipative Hopf - Hopf bifurcation with 2:1 resonance, generations of second harmonics in non-linear optics and resonant interaction of waves in a plasma is presented.
    Mathematics Subject Classification: Primary: 58F14; Secondary: 34C23, 34C25, 58C27.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Akhmanov and R. Khokhlov, Problems of Nonlinear Optics, Gordon and Breach, New-York, 1972.


    B. L. J. Braaksma, H. R. Broer and G. B. Huitema, Unfolding and bifurcations of quasi-periodic tori. Toward a quasi-periodic bifurcation theory, Memoirs of the American Mathematical society, 83 (1990), 83-175.


    N. Bussac, The Nonlinear three-wave system. Strange attractors and asymptotic solutions, Physica Scripta, T2/1 (1982), 110-118.


    S. Chow, C. Li and D. Wang, Normal Forms and Bifurcations of Planar Vector Fields, Cambridge University Press, Cambridge, 2008.


    S. N. Chow and J. K. Hale, Methods of bifurcation theory, Springer-Verlag, New York, 1982.


    E. Dupuis, De L'Existence D'hypertores Pres D'Une Bifurcation de Hopf - Hopf avec resonance 1:2, Ph.D thesis Universitate d'Ottawa, 2000.


    S. A. van Gils, M. Krupa and W. F. Langford, Hopf bifurcation with non-semisimple $1:1$ resonance, Nonlinearity, 3 (1990), 825-850.


    J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag: New York, 1990.


    B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge University Press, Cambridge-New York, 1981.


    D. W. Hughes and R. E. Proctor, Chaos and the effect of noise in a model of three-wave mode coupling, Phys. D, 46 (1990), no. 2, 163-176.


    E. Knobloch and R. E. Proctor, The Dou-ble Hopf bi-fur-ca-tion with $2:1$ resonance, Proc. R. Soc. Lond. A., 415 (1988), 61-90.


    Y. A. Kuznetsov, Elements of applied bifurcation theory, $3^{nd}$ edition, Springer-Verlag, New York, 2004.


    V. G. LeBlanc and W. F. Langford, Classification and unfoldings of $1:2$ resonant Hopf bifurcation, Arch. Rational Mech. Anal., 136 (1996), 305-307.


    V. G. LeBlanc, On some secondary bifurcations near resonant Hopf-Hopf interactions, Contin. Discrete Impuls. Systems, 7 (2000), 405-427.


    O. Lopez-Rebollal and J. R. Sanmartin, A generic, hard transition to chaos, Phys. D, 89 (1995), no. 1-2, 204-221.


    J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag New York, New York, 1976.


    G. Revel, D. M. Alonso, and J. L. Moiola, Numerical semi-global analysis of a 1:2 resonant Hopf-Hopf bifurcation, Phys. D, 247 (2013), 40-53.


    R. J. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Ph.D thesis New York University, 1964.


    J. M. Wersinger, J. M. Finn, and E. Ott, Bifurcation and "strange" behavior in instability saturation by nonlinear three-wave mode coupling, Phys. of Fluids, 23 (1980), no. 6, 1146-1164.


    D. Yu. Volkov, The Andronov-Hopf Bifurcation with 2: 1 Resonance, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 300 (2003), Teor. Predst. Din. Sist. Spets. Vyp. 8, 259-265, 293; translation in J. Math. Sci.(N.Y.), 128(2) (2005), no. 2831-2834.

  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint