\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori

Abstract Related Papers Cited by
  • A dissipative Hopf -- Hopf bifurcation with 2 :1 resonance are studied. A parameter dependent polynomial truncated normal form is derived. We study this truncated normal form. This system displays a large variety of behaviour both regular and chaotic solution. Existence of the periodic solutions and invariant tori of full system are proved. Analogy between dissipative Hopf - Hopf bifurcation with 2:1 resonance, generations of second harmonics in non-linear optics and resonant interaction of waves in a plasma is presented.
    Mathematics Subject Classification: Primary: 58F14; Secondary: 34C23, 34C25, 58C27.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Akhmanov and R. Khokhlov, Problems of Nonlinear Optics, Gordon and Breach, New-York, 1972.

    [2]

    B. L. J. Braaksma, H. R. Broer and G. B. Huitema, Unfolding and bifurcations of quasi-periodic tori. Toward a quasi-periodic bifurcation theory, Memoirs of the American Mathematical society, 83 (1990), 83-175.

    [3]

    N. Bussac, The Nonlinear three-wave system. Strange attractors and asymptotic solutions, Physica Scripta, T2/1 (1982), 110-118.

    [4]

    S. Chow, C. Li and D. Wang, Normal Forms and Bifurcations of Planar Vector Fields, Cambridge University Press, Cambridge, 2008.

    [5]

    S. N. Chow and J. K. Hale, Methods of bifurcation theory, Springer-Verlag, New York, 1982.

    [6]

    E. Dupuis, De L'Existence D'hypertores Pres D'Une Bifurcation de Hopf - Hopf avec resonance 1:2, Ph.D thesis Universitate d'Ottawa, 2000.

    [7]

    S. A. van Gils, M. Krupa and W. F. Langford, Hopf bifurcation with non-semisimple $1:1$ resonance, Nonlinearity, 3 (1990), 825-850.

    [8]

    J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag: New York, 1990.

    [9]

    B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge University Press, Cambridge-New York, 1981.

    [10]

    D. W. Hughes and R. E. Proctor, Chaos and the effect of noise in a model of three-wave mode coupling, Phys. D, 46 (1990), no. 2, 163-176.

    [11]

    E. Knobloch and R. E. Proctor, The Dou-ble Hopf bi-fur-ca-tion with $2:1$ resonance, Proc. R. Soc. Lond. A., 415 (1988), 61-90.

    [12]

    Y. A. Kuznetsov, Elements of applied bifurcation theory, $3^{nd}$ edition, Springer-Verlag, New York, 2004.

    [13]

    V. G. LeBlanc and W. F. Langford, Classification and unfoldings of $1:2$ resonant Hopf bifurcation, Arch. Rational Mech. Anal., 136 (1996), 305-307.

    [14]

    V. G. LeBlanc, On some secondary bifurcations near resonant Hopf-Hopf interactions, Contin. Discrete Impuls. Systems, 7 (2000), 405-427.

    [15]

    O. Lopez-Rebollal and J. R. Sanmartin, A generic, hard transition to chaos, Phys. D, 89 (1995), no. 1-2, 204-221.

    [16]

    J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag New York, New York, 1976.

    [17]

    G. Revel, D. M. Alonso, and J. L. Moiola, Numerical semi-global analysis of a 1:2 resonant Hopf-Hopf bifurcation, Phys. D, 247 (2013), 40-53.

    [18]

    R. J. Sacker, On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, Ph.D thesis New York University, 1964.

    [19]

    J. M. Wersinger, J. M. Finn, and E. Ott, Bifurcation and "strange" behavior in instability saturation by nonlinear three-wave mode coupling, Phys. of Fluids, 23 (1980), no. 6, 1146-1164.

    [20]

    D. Yu. Volkov, The Andronov-Hopf Bifurcation with 2: 1 Resonance, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 300 (2003), Teor. Predst. Din. Sist. Spets. Vyp. 8, 259-265, 293; translation in J. Math. Sci.(N.Y.), 128(2) (2005), no. 2831-2834.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return