2015, 2015(special): 1105-1114. doi: 10.3934/proc.2015.1105

Blow-up of solutions to semilinear wave equations with non-zero initial data

1. 

Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan

Received  September 2014 Revised  December 2014 Published  November 2015

In this paper, we are concerned with the initial value problem for $u_{tt}-\Delta u=|u_t|^p$ in $\mathbb{R}^n\times[0,\infty)$ with the initial data $u(x,0)=f(x)$, $u_t(x,0)=g(x)$, where $(f,g)$ are slowly decaying.
    H. Takamura [13] obtained the blow-up result for the case where $f\equiv0$ and $g\not\equiv0$. Our purpose in this paper is to show the blow-up result for the case where the both initial data do not vanish identically.
Citation: Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105
References:
[1]

R. Agemi, Blow-up of solutions to nonlinear wave equations in two space dimensions,, Manuscripta Math., 73 (1991), 153.   Google Scholar

[2]

R. T. Glassey, MathReview to "Global behavior of solutions to nonlinear wave equations in three space dimensions" of Sideris,, Comm. Partial Differential Equations (1983)., (1983).   Google Scholar

[3]

K. Hidano, Initial value problem of semilinear wave equations in three space dimensions,, Nonlinear Anal., 26 (1996), 941.   Google Scholar

[4]

K. Hidano and K. Tsutaya, Global existence and asymptotic behavior of solutions for nonlinear wave equations,, Indiana Univ. Math. J., 44 (1995), 1273.   Google Scholar

[5]

K. Hidano, C. Wang and K. Yokoyama, The Glassey conjecture with radially symmetric data,, Journal de Math ématiques Pures et Appliqu ées (9), 98 (2012), 518.   Google Scholar

[6]

F. John, Blow-up of solutions for quasi-linear wave equations in three space dimensions,, Comm. Pure Appl. Math., 34 (1981), 29.   Google Scholar

[7]

H. Kubo, Blow-up of solutions to semilinear wave equations with initial data of slow decay in low space dimensions,, Differential and Integral Equations., 7 (1994), 315.   Google Scholar

[8]

K. Masuda, Blow-up solutions for quasi-linear wave equations in two space dimensions,, Lecture Notes in Num. Appl. Anal., 6 (1983), 87.   Google Scholar

[9]

M. A. Rammaha, Finite-time blow-up for nonlinear wave equations in high dimensions,, Comm. Partial Differential Equations, 12 (1987), 677.   Google Scholar

[10]

M. A. Rammaha, H. Takamura, H. Uesaka and K. Wakasa, Blow-Up of Positive Solutions to Wave Equations in High Space Dimensions,, to appear in Differential and Integral Equations, ().   Google Scholar

[11]

J. Schaeffer, Finite-time blow-up for $u_{t t}-\Delta u=H(u_r,u_t)$ in two space dimensions,, Comm. Partial Differential Equations, 11 (1986), 513.   Google Scholar

[12]

T. C. Sideris, Global behavior of solutions to nonlinear wave equations in three space dimensions,, Comm. Partial Differential Equations, 8 (1983), 1219.   Google Scholar

[13]

H. Takamura, Blow-up for semilinear wave equations with slowly decaying data in high dimensions,, Differential Integral Equations, 8 (1995), 647.   Google Scholar

[14]

N. Tzvetkov, Existence of global solutions to nonlinear massless Dirac system and wave equations with small data,, Tsukuba Math. J., 22 (1998), 198.   Google Scholar

[15]

Y. Zhou, Blow up of solutions to the Cauchy problem for nonlinear wave equations,, Chin. Ann. Math. Ser.B, 22 (2001), 275.   Google Scholar

show all references

References:
[1]

R. Agemi, Blow-up of solutions to nonlinear wave equations in two space dimensions,, Manuscripta Math., 73 (1991), 153.   Google Scholar

[2]

R. T. Glassey, MathReview to "Global behavior of solutions to nonlinear wave equations in three space dimensions" of Sideris,, Comm. Partial Differential Equations (1983)., (1983).   Google Scholar

[3]

K. Hidano, Initial value problem of semilinear wave equations in three space dimensions,, Nonlinear Anal., 26 (1996), 941.   Google Scholar

[4]

K. Hidano and K. Tsutaya, Global existence and asymptotic behavior of solutions for nonlinear wave equations,, Indiana Univ. Math. J., 44 (1995), 1273.   Google Scholar

[5]

K. Hidano, C. Wang and K. Yokoyama, The Glassey conjecture with radially symmetric data,, Journal de Math ématiques Pures et Appliqu ées (9), 98 (2012), 518.   Google Scholar

[6]

F. John, Blow-up of solutions for quasi-linear wave equations in three space dimensions,, Comm. Pure Appl. Math., 34 (1981), 29.   Google Scholar

[7]

H. Kubo, Blow-up of solutions to semilinear wave equations with initial data of slow decay in low space dimensions,, Differential and Integral Equations., 7 (1994), 315.   Google Scholar

[8]

K. Masuda, Blow-up solutions for quasi-linear wave equations in two space dimensions,, Lecture Notes in Num. Appl. Anal., 6 (1983), 87.   Google Scholar

[9]

M. A. Rammaha, Finite-time blow-up for nonlinear wave equations in high dimensions,, Comm. Partial Differential Equations, 12 (1987), 677.   Google Scholar

[10]

M. A. Rammaha, H. Takamura, H. Uesaka and K. Wakasa, Blow-Up of Positive Solutions to Wave Equations in High Space Dimensions,, to appear in Differential and Integral Equations, ().   Google Scholar

[11]

J. Schaeffer, Finite-time blow-up for $u_{t t}-\Delta u=H(u_r,u_t)$ in two space dimensions,, Comm. Partial Differential Equations, 11 (1986), 513.   Google Scholar

[12]

T. C. Sideris, Global behavior of solutions to nonlinear wave equations in three space dimensions,, Comm. Partial Differential Equations, 8 (1983), 1219.   Google Scholar

[13]

H. Takamura, Blow-up for semilinear wave equations with slowly decaying data in high dimensions,, Differential Integral Equations, 8 (1995), 647.   Google Scholar

[14]

N. Tzvetkov, Existence of global solutions to nonlinear massless Dirac system and wave equations with small data,, Tsukuba Math. J., 22 (1998), 198.   Google Scholar

[15]

Y. Zhou, Blow up of solutions to the Cauchy problem for nonlinear wave equations,, Chin. Ann. Math. Ser.B, 22 (2001), 275.   Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[2]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[3]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[13]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[14]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[15]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[16]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[19]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[20]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

 Impact Factor: 

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]