
Previous Article
Blowup of solutions to semilinear wave equations with nonzero initial data
 PROC Home
 This Issue

Next Article
Existence of solutions to chemotaxis dynamics with logistic source
Classification of periodic orbits in the planar equalmass fourbody problem
1.  School of Mathematics and System Science, Beihang University, Beijing 100191, China 
2.  Department of Mathematics, Brigham Young University, Provo, Utah 84602 
3.  Department of Mathematics and Computer Science, Virginia State University, Petersburg, Virginia 23806 
References:
[1] 
R. Broucke, Classification of periodic orbits in the four and fivebody problems,, Ann. N.Y. Acad. Sci., 1017 (2004), 408. Google Scholar 
[2] 
K. Chen, Actionminimizing orbits in the parallelogram fourbody problem with equal masses,, Arch. Ration. Mech. Anal., 170 (2001), 293. Google Scholar 
[3] 
K. Chen, Variational methods on periodic and quasiperiodic solutions for the Nbody problem,, Erg. Thy. Dyn. Sys., 23 (2003), 1691. Google Scholar 
[4] 
L. Sbano, Periodic orbits of Hamiltonian systems,, in Mathematics of Complexity and Dynamical Systems(ed. R.A. Meyers), (2011), 1212. Google Scholar 
[5] 
T. Ouyang, and Z. Xie, A new variational method with SPBC and many stable choreographic solutions of the Newtonian 4body problem, preprint,, , (). Google Scholar 
[6] 
T. Ouyang, and Z. Xie, A continuum of periodic solutions to the fourbody problem with various choices of masses, preprint,, , (). Google Scholar 
[7] 
D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical nbody problem,, Invent. Math., 155 (2004), 305. Google Scholar 
[8] 
M. Šuvakov and V. Dmitrašinović, Three classes of Newtonian threebody planar periodic orbits,, Phy. Rev. Lett., 110 (2013). Google Scholar 
[9] 
R. Vanderbei, New orbits for the nbody problem,, Ann. N.Y. Acad. Sci., 1017 (2004), 422. Google Scholar 
[10] 
L. Bakker, T. Ouyang, D. Yan, S. Simmons and G. Roberts, Linear stability for some symmetric periodic simultaneous binary collision orbits in the fourbody problem,, Celestial Mech. Dynam. Astronom., 108 (2010), 147. Google Scholar 
[11] 
D. Yan, Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass fourbody problem,, J. Math. Anal. Appl. 388 (2012), 388 (2012), 942. Google Scholar 
[12] 
T. Ouyang, S. Simmons and D.Yan, Periodic solutions with singularities in two dimensions in the nbody problem,, Rocky Mountain J. Math., 42 (2012), 1601. Google Scholar 
[13] 
D. Yan, and T. Ouyang, New phenomena in the spatial isosceles threebody problem,, Inter. J. Bifurcation Chaos, 25 (2015). Google Scholar 
[14] 
D. Yan, and T. Ouyang, Existence and linear stability of spatial isosceles periodic orbits in the equalmass threebody problem,, preprint., (). Google Scholar 
show all references
References:
[1] 
R. Broucke, Classification of periodic orbits in the four and fivebody problems,, Ann. N.Y. Acad. Sci., 1017 (2004), 408. Google Scholar 
[2] 
K. Chen, Actionminimizing orbits in the parallelogram fourbody problem with equal masses,, Arch. Ration. Mech. Anal., 170 (2001), 293. Google Scholar 
[3] 
K. Chen, Variational methods on periodic and quasiperiodic solutions for the Nbody problem,, Erg. Thy. Dyn. Sys., 23 (2003), 1691. Google Scholar 
[4] 
L. Sbano, Periodic orbits of Hamiltonian systems,, in Mathematics of Complexity and Dynamical Systems(ed. R.A. Meyers), (2011), 1212. Google Scholar 
[5] 
T. Ouyang, and Z. Xie, A new variational method with SPBC and many stable choreographic solutions of the Newtonian 4body problem, preprint,, , (). Google Scholar 
[6] 
T. Ouyang, and Z. Xie, A continuum of periodic solutions to the fourbody problem with various choices of masses, preprint,, , (). Google Scholar 
[7] 
D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical nbody problem,, Invent. Math., 155 (2004), 305. Google Scholar 
[8] 
M. Šuvakov and V. Dmitrašinović, Three classes of Newtonian threebody planar periodic orbits,, Phy. Rev. Lett., 110 (2013). Google Scholar 
[9] 
R. Vanderbei, New orbits for the nbody problem,, Ann. N.Y. Acad. Sci., 1017 (2004), 422. Google Scholar 
[10] 
L. Bakker, T. Ouyang, D. Yan, S. Simmons and G. Roberts, Linear stability for some symmetric periodic simultaneous binary collision orbits in the fourbody problem,, Celestial Mech. Dynam. Astronom., 108 (2010), 147. Google Scholar 
[11] 
D. Yan, Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass fourbody problem,, J. Math. Anal. Appl. 388 (2012), 388 (2012), 942. Google Scholar 
[12] 
T. Ouyang, S. Simmons and D.Yan, Periodic solutions with singularities in two dimensions in the nbody problem,, Rocky Mountain J. Math., 42 (2012), 1601. Google Scholar 
[13] 
D. Yan, and T. Ouyang, New phenomena in the spatial isosceles threebody problem,, Inter. J. Bifurcation Chaos, 25 (2015). Google Scholar 
[14] 
D. Yan, and T. Ouyang, Existence and linear stability of spatial isosceles periodic orbits in the equalmass threebody problem,, preprint., (). Google Scholar 
[1] 
Davide L. Ferrario, Alessandro Portaluri. Dynamics of the the dihedral fourbody problem. Discrete & Continuous Dynamical Systems  S, 2013, 6 (4) : 925974. doi: 10.3934/dcdss.2013.6.925 
[2] 
HsinYuan Huang. Schubartlike orbits in the Newtonian collinear fourbody problem: A variational proof. Discrete & Continuous Dynamical Systems  A, 2012, 32 (5) : 17631774. doi: 10.3934/dcds.2012.32.1763 
[3] 
Tiancheng Ouyang, Zhifu Xie. Regularization of simultaneous binary collisions and solutions with singularity in the collinear fourbody problem. Discrete & Continuous Dynamical Systems  A, 2009, 24 (3) : 909932. doi: 10.3934/dcds.2009.24.909 
[4] 
Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral sixbody problem. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 19031922. doi: 10.3934/dcds.2017080 
[5] 
Frederic Gabern, Àngel Jorba. A restricted fourbody model for the dynamics near the Lagrangian points of the SunJupiter system. Discrete & Continuous Dynamical Systems  B, 2001, 1 (2) : 143182. doi: 10.3934/dcdsb.2001.1.143 
[6] 
Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete & Continuous Dynamical Systems  A, 2013, 33 (3) : 10091032. doi: 10.3934/dcds.2013.33.1009 
[7] 
Mark Lewis, Daniel Offin, PietroLuciano Buono, Mitchell Kovacic. Instability of the periodic hiphop orbit in the $2N$body problem with equal masses. Discrete & Continuous Dynamical Systems  A, 2013, 33 (3) : 11371155. doi: 10.3934/dcds.2013.33.1137 
[8] 
Ernesto A. Lacomba, Mario Medina. Oscillatory motions in the rectangular four body problem. Discrete & Continuous Dynamical Systems  S, 2008, 1 (4) : 557587. doi: 10.3934/dcdss.2008.1.557 
[9] 
Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the threebody problem. Conference Publications, 2011, 2011 (Special) : 11581166. doi: 10.3934/proc.2011.2011.1158 
[10] 
KuoChang Chen. On ChencinerMontgomery's orbit in the threebody problem. Discrete & Continuous Dynamical Systems  A, 2001, 7 (1) : 8590. doi: 10.3934/dcds.2001.7.85 
[11] 
Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the crisscross orbit in the equalmass threebody problem. Discrete & Continuous Dynamical Systems  A, 2016, 36 (11) : 59715991. doi: 10.3934/dcds.2016062 
[12] 
Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3body problem with crossing singularities. Discrete & Continuous Dynamical Systems  B, 2013, 18 (5) : 13231344. doi: 10.3934/dcdsb.2013.18.1323 
[13] 
Samuel R. Kaplan, Mark Levi, Richard Montgomery. Making the moon reverse its orbit, or, stuttering in the planar threebody problem. Discrete & Continuous Dynamical Systems  B, 2008, 10 (2&3, September) : 569595. doi: 10.3934/dcdsb.2008.10.569 
[14] 
NaiChia Chen. Symmetric periodic orbits in three subproblems of the $N$body problem. Discrete & Continuous Dynamical Systems  B, 2014, 19 (6) : 15231548. doi: 10.3934/dcdsb.2014.19.1523 
[15] 
Gianni Arioli. Branches of periodic orbits for the planar restricted 3body problem. Discrete & Continuous Dynamical Systems  A, 2004, 11 (4) : 745755. doi: 10.3934/dcds.2004.11.745 
[16] 
Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted threebody problem. Discrete & Continuous Dynamical Systems  A, 2014, 34 (12) : 52295245. doi: 10.3934/dcds.2014.34.5229 
[17] 
Daniel Offin, Hildeberto Cabral. Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete & Continuous Dynamical Systems  S, 2009, 2 (2) : 379392. doi: 10.3934/dcdss.2009.2.379 
[18] 
Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete & Continuous Dynamical Systems  B, 2019, 24 (3) : 10071020. doi: 10.3934/dcdsb.2019003 
[19] 
Tiancheng Ouyang, Duokui Yan. Variational properties and linear stabilities of spatial isosceles orbits in the equalmass threebody problem. Discrete & Continuous Dynamical Systems  A, 2017, 37 (7) : 39894018. doi: 10.3934/dcds.2017169 
[20] 
Andrea Venturelli. A Variational proof of the existence of Von Schubart's orbit. Discrete & Continuous Dynamical Systems  B, 2008, 10 (2&3, September) : 699717. doi: 10.3934/dcdsb.2008.10.699 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]