Citation: |
[1] |
R. Broucke, Classification of periodic orbits in the four- and five-body problems, Ann. N.Y. Acad. Sci., 1017 (2004), 408-421. |
[2] |
K. Chen, Action-minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal., 170 (2001), 293-318. |
[3] |
K. Chen, Variational methods on periodic and quasi-periodic solutions for the N-body problem, Erg. Thy. Dyn. Sys., 23 (2003), 1691-1715. |
[4] |
L. Sbano, Periodic orbits of Hamiltonian systems, in Mathematics of Complexity and Dynamical Systems(ed. R.A. Meyers), Springer, (2011), 1212-1236. |
[5] |
T. Ouyang, and Z. Xie, A new variational method with SPBC and many stable choreographic solutions of the Newtonian 4-body problem, preprint, arXiv:1306.0119. |
[6] |
T. Ouyang, and Z. Xie, A continuum of periodic solutions to the four-body problem with various choices of masses, preprint, arXiv:1310.4206. |
[7] |
D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math., 155 (2004), 305-362. |
[8] |
M. Šuvakov and V. Dmitrašinović, Three classes of Newtonian three-body planar periodic orbits, Phy. Rev. Lett., 110 (2013), 114301. |
[9] |
R. Vanderbei, New orbits for the n-body problem, Ann. N.Y. Acad. Sci., 1017 (2004), 422-433. |
[10] |
L. Bakker, T. Ouyang, D. Yan, S. Simmons and G. Roberts, Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem, Celestial Mech. Dynam. Astronom., 108 (2010), 147-164. |
[11] |
D. Yan, Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem, J. Math. Anal. Appl. 388 (2012), 942-951. |
[12] |
T. Ouyang, S. Simmons and D.Yan, Periodic solutions with singularities in two dimensions in the n-body problem, Rocky Mountain J. Math., 42 (2012), 1601-1614. |
[13] |
D. Yan, and T. Ouyang, New phenomena in the spatial isosceles three-body problem, Inter. J. Bifurcation Chaos, 25 (2015), 1550116. |
[14] |
D. Yan, and T. Ouyang, Existence and linear stability of spatial isosceles periodic orbits in the equal-mass three-body problem, preprint. |