Advanced Search
Article Contents
Article Contents

Existence of solutions to chemotaxis dynamics with logistic source

Abstract Related Papers Cited by
  • This paper is concerned with a chemotaxis system with nonlinear diffusion and logistic growth term $f(b) = \kappa b-\mu |b|^{\alpha-1}b$ with $\kappa>0$, $\mu>0$ and $\alpha > 1$ under the no-flux boundary condition. It is shown that there exists a local solution to this system for any $L^2$-initial data and that under a stronger assumption on the chemotactic sensitivity there exists a global solution for any $L^2$-initial data. The proof is based on the method built by Marinoschi [8].
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc. 74 (2006), 453-474.


    E. Ardeleanu, G. Marinoschi, An asymptotic solution to a nonlinear reaction-diffusion system with chemotaxis, Numer. Funct. Anal. Optim. 34 (2013), 117-148.


    V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010.


    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.


    S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2003.


    E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399-415.


    J. L. Lions, Quelques Méthodes de Résollution des Problemes aux Limites non Linéaires, Dunod, Paris, 1969.


    G. Marinoschi, Well-posedness for chemotaxis dynamics with nonlinear cell diffusion, J. Math. Anal. Appl. 402 (2013), 415-439.


    J. I. Tello, Mathematical analysis and stability of a chemotaxis model with logistic term, Math. Methods Appl. Sci. 27 (2004), 1865-1880.


    J. I. Tello, M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations 32 (2007), 849-877.


    T. Yokota, N. Yoshino, Existence of solutions to chemotaxis dynamics with Lipschitz diffusion, J. Math. Anal. Appl. 419 (2014), 756-774.

  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views() PDF downloads(194) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint