\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of solutions to chemotaxis dynamics with logistic source

Abstract / Introduction Related Papers Cited by
  • This paper is concerned with a chemotaxis system with nonlinear diffusion and logistic growth term $f(b) = \kappa b-\mu |b|^{\alpha-1}b$ with $\kappa>0$, $\mu>0$ and $\alpha > 1$ under the no-flux boundary condition. It is shown that there exists a local solution to this system for any $L^2$-initial data and that under a stronger assumption on the chemotactic sensitivity there exists a global solution for any $L^2$-initial data. The proof is based on the method built by Marinoschi [8].
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc. 74 (2006), 453-474.

    [2]

    E. Ardeleanu, G. Marinoschi, An asymptotic solution to a nonlinear reaction-diffusion system with chemotaxis, Numer. Funct. Anal. Optim. 34 (2013), 117-148.

    [3]

    V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010.

    [4]

    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

    [5]

    S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2003.

    [6]

    E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399-415.

    [7]

    J. L. Lions, Quelques Méthodes de Résollution des Problemes aux Limites non Linéaires, Dunod, Paris, 1969.

    [8]

    G. Marinoschi, Well-posedness for chemotaxis dynamics with nonlinear cell diffusion, J. Math. Anal. Appl. 402 (2013), 415-439.

    [9]

    J. I. Tello, Mathematical analysis and stability of a chemotaxis model with logistic term, Math. Methods Appl. Sci. 27 (2004), 1865-1880.

    [10]

    J. I. Tello, M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations 32 (2007), 849-877.

    [11]

    T. Yokota, N. Yoshino, Existence of solutions to chemotaxis dynamics with Lipschitz diffusion, J. Math. Anal. Appl. 419 (2014), 756-774.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(226) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return