2015, 2015(special): 1134-1142. doi: 10.3934/proc.2015.1134

Pullback uniform dissipativity of stochastic reversible Schnackenberg equations

1. 

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700

Received  September 2014 Revised  January 2015 Published  November 2015

Asymptotic dynamics of stochastic reversible Schnackenberg equations with multiplicative white noise on a three-dimensional bounded domain is investigated in this paper. The pullback uniform dissipativity in terms of the existence of a common pullback absorbing set with respect to the reverse reaction rate of this typical autocatalytic reaction-diffusion system is proved through decomposed grouping estimates.
Citation: Yuncheng You. Pullback uniform dissipativity of stochastic reversible Schnackenberg equations. Conference Publications, 2015, 2015 (special) : 1134-1142. doi: 10.3934/proc.2015.1134
References:
[1]

L. Arnold, "Random Dynamical Systems",, Springer-Verlag, (1998).   Google Scholar

[2]

P.W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Diff. Eqns., 246 (2009), 845.   Google Scholar

[3]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", AMS Colloquium Publications, 49 (2002).   Google Scholar

[4]

I. Chueshov, "Monotone Random Systems Theory and Applications",, Lect. Notes of Math., (1779).   Google Scholar

[5]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.   Google Scholar

[6]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system $a+2b\to 3b,b\to c$,, Chem. Eng. Sci., 39 (1984), 1087.   Google Scholar

[7]

P. Martin-Rubio and J.C. Robinson, Attractors for the stochastic 3D Navier-Stokes equations,, Stochastics and Dynamics, 3 (2003), 279.   Google Scholar

[8]

J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications,, 3rd edition, (2003).   Google Scholar

[9]

J. E. Pearson, Complex patterns in a simple system,, Science, 261 (1993), 189.   Google Scholar

[10]

J. Schnackenberg, Simple chemical reaction systems with limit cycle behavior,, J. Theor. Biology, 81 (1979), 389.   Google Scholar

[11]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).   Google Scholar

[12]

M.J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the Schnackenberg model,, Stud. Appl. Math., 109 (2002), 229.   Google Scholar

[13]

Y. You, Dynamics of three-component reversible Gray-Scott model,, DCDS-B, 14 (2010), 1671.   Google Scholar

[14]

Y. You, Global dynamics and robustness of reversible autocatalytic reaction-diffusion systems,, Nonlinear Analysis, 75 (2012), 3049.   Google Scholar

[15]

Y. You, Random attractor for stochastic reversible Schnackenberg equations,, Discrete and Continuous Dynamical Systems, 7 (2014), 1347.   Google Scholar

show all references

References:
[1]

L. Arnold, "Random Dynamical Systems",, Springer-Verlag, (1998).   Google Scholar

[2]

P.W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Diff. Eqns., 246 (2009), 845.   Google Scholar

[3]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,", AMS Colloquium Publications, 49 (2002).   Google Scholar

[4]

I. Chueshov, "Monotone Random Systems Theory and Applications",, Lect. Notes of Math., (1779).   Google Scholar

[5]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.   Google Scholar

[6]

P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system $a+2b\to 3b,b\to c$,, Chem. Eng. Sci., 39 (1984), 1087.   Google Scholar

[7]

P. Martin-Rubio and J.C. Robinson, Attractors for the stochastic 3D Navier-Stokes equations,, Stochastics and Dynamics, 3 (2003), 279.   Google Scholar

[8]

J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications,, 3rd edition, (2003).   Google Scholar

[9]

J. E. Pearson, Complex patterns in a simple system,, Science, 261 (1993), 189.   Google Scholar

[10]

J. Schnackenberg, Simple chemical reaction systems with limit cycle behavior,, J. Theor. Biology, 81 (1979), 389.   Google Scholar

[11]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).   Google Scholar

[12]

M.J. Ward and J. Wei, The existence and stability of asymmetric spike patterns for the Schnackenberg model,, Stud. Appl. Math., 109 (2002), 229.   Google Scholar

[13]

Y. You, Dynamics of three-component reversible Gray-Scott model,, DCDS-B, 14 (2010), 1671.   Google Scholar

[14]

Y. You, Global dynamics and robustness of reversible autocatalytic reaction-diffusion systems,, Nonlinear Analysis, 75 (2012), 3049.   Google Scholar

[15]

Y. You, Random attractor for stochastic reversible Schnackenberg equations,, Discrete and Continuous Dynamical Systems, 7 (2014), 1347.   Google Scholar

[1]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[8]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[9]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[10]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[11]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[12]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[16]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

 Impact Factor: 

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]