March  2021, 6(1): 1-22. doi: 10.3934/puqr.2021001

G-Lévy processes under sublinear expectations

1. 

Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan 250100, Shandong, China

2. 

School of Mathematics, Shandong University, Jinan 250100, Shandong, China

Email: humingshang@sdu.edu.cn, peng@sdu.edu.cn

Received  June 22, 2020 Accepted  December 14, 2020 Published  March 2021

Fund Project: This work was supported by National Key R&D Program of China (Grant No. 2018YFA0703900), National Natural Science Foundation of China (Grant No. 11671231) , Tian Yuan Fund of the National Natural Science Foundation of China (Grant Nos. 11526205 and 11626247) and National Basic Research Program of China (973 Program) (Grant No. 2007CB814900).

We introduce G-Lévy processes which develop the theory of processes with independent and stationary increments under the framework of sublinear expectations. We then obtain the Lévy–Khintchine formula and the existence for G-Lévy processes. We also introduce G-Poisson processes.

Citation: Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001
References:
[1]

Alvarez, O. and Tourin, A., Viscosity solutions of nonlinear integrodifferential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1996, 13(3): 293-317. Google Scholar

[2]

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., Thinking Coherently, RISK, 1997, 10: 68-71. Google Scholar

[3]

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., Coherent measures of risk, Mathematical Finance, 1999, 9(3): 203-228. doi: 10.1111/1467-9965.00068.  Google Scholar

[4]

Barles, G. and Imbert, C., Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. I. H. Poincaré-AN, 2008, 25: 567-585. Google Scholar

[5]

Bertoin, J., Lévy Processes, Cambridge University Press, 1996. Google Scholar

[6]

Crandall, M., Semidifferentials, quadratic forms and fully nonlinear elliptic equations of second order, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1989, 6(6): 419-435. Google Scholar

[7]

Crandall, M. G., Ishii, H. and Lions, P.-L., User’S guide to viscosity solutions of second order partial differential equations, Bulletin of The American Mathematical Society, 1992, 27(1): 1-67. doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

Delbaen, F., Coherent measures of risk on general probability space, In: Advances in Finance and Stochastics, Essays in Honor of Dieter Sondermann (Sandmann, K. and Schonbucher, P.J. eds.), Springer, Berlin, 2002: 1-37. Google Scholar

[9]

Denis, L., Hu, M. and Peng, S., Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths, Potential Anal., 2011, 34: 139-161. doi: 10.1007/s11118-010-9185-x.  Google Scholar

[10]

Huber, P., Robust Statistics, Wiley, New York, 1981. Google Scholar

[11]

Hu, M. and Peng, S., On representation theorem of G-expectations and paths of G-Brownian motion, Acta Mathematicae Applicatae Sinica, English Series, 2009, 25(3): 539-546. doi: 10.1007/s10255-008-8831-1.  Google Scholar

[12]

Jakobsen, E.R. and Karlsen, K.H., A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, NoDEA Nonlinear Differ. Equ. Appl., 2006, 13: 137-165. doi: 10.1007/s00030-005-0031-6.  Google Scholar

[13]

Lévy, P., Théorie de l’Addition des Variables Aléatoires, GauthierVillars, Paris, 1954. Google Scholar

[14]

Peng, S., Filtration consistent nonliear expectations and evaluations of contingent claims, Acta Mathematicae Applicatae Sinica, English Series, 2004, 20(2): 1-24. Google Scholar

[15]

Peng, S., Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 2005, 26B(2): 159-184. Google Scholar

[16]

Peng, S., G-Expectation, G-Brownian motion and related stochastic calculus of Itô’s type, In: Stochastic Analysis and Applications, Able Symposium, Abel Symposia 2, SpringerVerlag, 2007: 541-567. Google Scholar

[17]

Peng, S., Multi-Dimensional G-Brownian motion and related stochastic calculus under G-Expectation, Stochastic Processes and their Applications, 2008, 118: 2223-2253. doi: 10.1016/j.spa.2007.10.015.  Google Scholar

[18]

Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer, 2019. Google Scholar

[19]

Peng, S., A new central limit theorem under sublinear expectations, arXiv: 0803.2656v1, 2008. Google Scholar

[20]

Peng, S., Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, 2009, 52(7): 1391-1411. doi: 10.1007/s11425-009-0121-8.  Google Scholar

[21]

Sato, K.-I., Lévy processes and infinitely divisible distributions, Cambridge University, 1999. Google Scholar

show all references

References:
[1]

Alvarez, O. and Tourin, A., Viscosity solutions of nonlinear integrodifferential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1996, 13(3): 293-317. Google Scholar

[2]

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., Thinking Coherently, RISK, 1997, 10: 68-71. Google Scholar

[3]

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., Coherent measures of risk, Mathematical Finance, 1999, 9(3): 203-228. doi: 10.1111/1467-9965.00068.  Google Scholar

[4]

Barles, G. and Imbert, C., Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. I. H. Poincaré-AN, 2008, 25: 567-585. Google Scholar

[5]

Bertoin, J., Lévy Processes, Cambridge University Press, 1996. Google Scholar

[6]

Crandall, M., Semidifferentials, quadratic forms and fully nonlinear elliptic equations of second order, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1989, 6(6): 419-435. Google Scholar

[7]

Crandall, M. G., Ishii, H. and Lions, P.-L., User’S guide to viscosity solutions of second order partial differential equations, Bulletin of The American Mathematical Society, 1992, 27(1): 1-67. doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

Delbaen, F., Coherent measures of risk on general probability space, In: Advances in Finance and Stochastics, Essays in Honor of Dieter Sondermann (Sandmann, K. and Schonbucher, P.J. eds.), Springer, Berlin, 2002: 1-37. Google Scholar

[9]

Denis, L., Hu, M. and Peng, S., Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths, Potential Anal., 2011, 34: 139-161. doi: 10.1007/s11118-010-9185-x.  Google Scholar

[10]

Huber, P., Robust Statistics, Wiley, New York, 1981. Google Scholar

[11]

Hu, M. and Peng, S., On representation theorem of G-expectations and paths of G-Brownian motion, Acta Mathematicae Applicatae Sinica, English Series, 2009, 25(3): 539-546. doi: 10.1007/s10255-008-8831-1.  Google Scholar

[12]

Jakobsen, E.R. and Karlsen, K.H., A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, NoDEA Nonlinear Differ. Equ. Appl., 2006, 13: 137-165. doi: 10.1007/s00030-005-0031-6.  Google Scholar

[13]

Lévy, P., Théorie de l’Addition des Variables Aléatoires, GauthierVillars, Paris, 1954. Google Scholar

[14]

Peng, S., Filtration consistent nonliear expectations and evaluations of contingent claims, Acta Mathematicae Applicatae Sinica, English Series, 2004, 20(2): 1-24. Google Scholar

[15]

Peng, S., Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 2005, 26B(2): 159-184. Google Scholar

[16]

Peng, S., G-Expectation, G-Brownian motion and related stochastic calculus of Itô’s type, In: Stochastic Analysis and Applications, Able Symposium, Abel Symposia 2, SpringerVerlag, 2007: 541-567. Google Scholar

[17]

Peng, S., Multi-Dimensional G-Brownian motion and related stochastic calculus under G-Expectation, Stochastic Processes and their Applications, 2008, 118: 2223-2253. doi: 10.1016/j.spa.2007.10.015.  Google Scholar

[18]

Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer, 2019. Google Scholar

[19]

Peng, S., A new central limit theorem under sublinear expectations, arXiv: 0803.2656v1, 2008. Google Scholar

[20]

Peng, S., Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, 2009, 52(7): 1391-1411. doi: 10.1007/s11425-009-0121-8.  Google Scholar

[21]

Sato, K.-I., Lévy processes and infinitely divisible distributions, Cambridge University, 1999. Google Scholar

[1]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[2]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[3]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[4]

Sel Ly, Nicolas Privault. Stochastic ordering by g-expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 61-98. doi: 10.3934/puqr.2021004

[5]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[6]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[7]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[8]

Liqiang Jin, Yanqing Liu, Yanyan Yin, Kok Lay Teo, Fei Liu. Design of probabilistic $ l_2-l_\infty $ filter for uncertain Markov jump systems with partial information of the transition probabilities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021070

[9]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[10]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[11]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[12]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[13]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[14]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[15]

José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005

[16]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[17]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[18]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[19]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[20]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021079

 Impact Factor: 

Metrics

  • PDF downloads (43)
  • HTML views (39)
  • Cited by (0)

Other articles
by authors

[Back to Top]