March  2021, 6(1): 1-22. doi: 10.3934/puqr.2021001

G-Lévy processes under sublinear expectations

1. 

Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan 250100, Shandong, China

2. 

School of Mathematics, Shandong University, Jinan 250100, Shandong, China

Email: humingshang@sdu.edu.cn, peng@sdu.edu.cn

Received  June 22, 2020 Accepted  December 14, 2020 Published  March 2021

Fund Project: This work was supported by National Key R&D Program of China (Grant No. 2018YFA0703900), National Natural Science Foundation of China (Grant No. 11671231) , Tian Yuan Fund of the National Natural Science Foundation of China (Grant Nos. 11526205 and 11626247) and National Basic Research Program of China (973 Program) (Grant No. 2007CB814900).

We introduce G-Lévy processes which develop the theory of processes with independent and stationary increments under the framework of sublinear expectations. We then obtain the Lévy–Khintchine formula and the existence for G-Lévy processes. We also introduce G-Poisson processes.

Citation: Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001
References:
[1]

Alvarez, O. and Tourin, A., Viscosity solutions of nonlinear integrodifferential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1996, 13(3): 293-317. Google Scholar

[2]

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., Thinking Coherently, RISK, 1997, 10: 68-71. Google Scholar

[3]

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., Coherent measures of risk, Mathematical Finance, 1999, 9(3): 203-228. doi: 10.1111/1467-9965.00068.  Google Scholar

[4]

Barles, G. and Imbert, C., Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. I. H. Poincaré-AN, 2008, 25: 567-585. Google Scholar

[5]

Bertoin, J., Lévy Processes, Cambridge University Press, 1996. Google Scholar

[6]

Crandall, M., Semidifferentials, quadratic forms and fully nonlinear elliptic equations of second order, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1989, 6(6): 419-435. Google Scholar

[7]

Crandall, M. G., Ishii, H. and Lions, P.-L., User’S guide to viscosity solutions of second order partial differential equations, Bulletin of The American Mathematical Society, 1992, 27(1): 1-67. doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

Delbaen, F., Coherent measures of risk on general probability space, In: Advances in Finance and Stochastics, Essays in Honor of Dieter Sondermann (Sandmann, K. and Schonbucher, P.J. eds.), Springer, Berlin, 2002: 1-37. Google Scholar

[9]

Denis, L., Hu, M. and Peng, S., Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths, Potential Anal., 2011, 34: 139-161. doi: 10.1007/s11118-010-9185-x.  Google Scholar

[10]

Huber, P., Robust Statistics, Wiley, New York, 1981. Google Scholar

[11]

Hu, M. and Peng, S., On representation theorem of G-expectations and paths of G-Brownian motion, Acta Mathematicae Applicatae Sinica, English Series, 2009, 25(3): 539-546. doi: 10.1007/s10255-008-8831-1.  Google Scholar

[12]

Jakobsen, E.R. and Karlsen, K.H., A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, NoDEA Nonlinear Differ. Equ. Appl., 2006, 13: 137-165. doi: 10.1007/s00030-005-0031-6.  Google Scholar

[13]

Lévy, P., Théorie de l’Addition des Variables Aléatoires, GauthierVillars, Paris, 1954. Google Scholar

[14]

Peng, S., Filtration consistent nonliear expectations and evaluations of contingent claims, Acta Mathematicae Applicatae Sinica, English Series, 2004, 20(2): 1-24. Google Scholar

[15]

Peng, S., Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 2005, 26B(2): 159-184. Google Scholar

[16]

Peng, S., G-Expectation, G-Brownian motion and related stochastic calculus of Itô’s type, In: Stochastic Analysis and Applications, Able Symposium, Abel Symposia 2, SpringerVerlag, 2007: 541-567. Google Scholar

[17]

Peng, S., Multi-Dimensional G-Brownian motion and related stochastic calculus under G-Expectation, Stochastic Processes and their Applications, 2008, 118: 2223-2253. doi: 10.1016/j.spa.2007.10.015.  Google Scholar

[18]

Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer, 2019. Google Scholar

[19]

Peng, S., A new central limit theorem under sublinear expectations, arXiv: 0803.2656v1, 2008. Google Scholar

[20]

Peng, S., Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, 2009, 52(7): 1391-1411. doi: 10.1007/s11425-009-0121-8.  Google Scholar

[21]

Sato, K.-I., Lévy processes and infinitely divisible distributions, Cambridge University, 1999. Google Scholar

show all references

References:
[1]

Alvarez, O. and Tourin, A., Viscosity solutions of nonlinear integrodifferential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1996, 13(3): 293-317. Google Scholar

[2]

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., Thinking Coherently, RISK, 1997, 10: 68-71. Google Scholar

[3]

Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D., Coherent measures of risk, Mathematical Finance, 1999, 9(3): 203-228. doi: 10.1111/1467-9965.00068.  Google Scholar

[4]

Barles, G. and Imbert, C., Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. I. H. Poincaré-AN, 2008, 25: 567-585. Google Scholar

[5]

Bertoin, J., Lévy Processes, Cambridge University Press, 1996. Google Scholar

[6]

Crandall, M., Semidifferentials, quadratic forms and fully nonlinear elliptic equations of second order, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1989, 6(6): 419-435. Google Scholar

[7]

Crandall, M. G., Ishii, H. and Lions, P.-L., User’S guide to viscosity solutions of second order partial differential equations, Bulletin of The American Mathematical Society, 1992, 27(1): 1-67. doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

Delbaen, F., Coherent measures of risk on general probability space, In: Advances in Finance and Stochastics, Essays in Honor of Dieter Sondermann (Sandmann, K. and Schonbucher, P.J. eds.), Springer, Berlin, 2002: 1-37. Google Scholar

[9]

Denis, L., Hu, M. and Peng, S., Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths, Potential Anal., 2011, 34: 139-161. doi: 10.1007/s11118-010-9185-x.  Google Scholar

[10]

Huber, P., Robust Statistics, Wiley, New York, 1981. Google Scholar

[11]

Hu, M. and Peng, S., On representation theorem of G-expectations and paths of G-Brownian motion, Acta Mathematicae Applicatae Sinica, English Series, 2009, 25(3): 539-546. doi: 10.1007/s10255-008-8831-1.  Google Scholar

[12]

Jakobsen, E.R. and Karlsen, K.H., A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations, NoDEA Nonlinear Differ. Equ. Appl., 2006, 13: 137-165. doi: 10.1007/s00030-005-0031-6.  Google Scholar

[13]

Lévy, P., Théorie de l’Addition des Variables Aléatoires, GauthierVillars, Paris, 1954. Google Scholar

[14]

Peng, S., Filtration consistent nonliear expectations and evaluations of contingent claims, Acta Mathematicae Applicatae Sinica, English Series, 2004, 20(2): 1-24. Google Scholar

[15]

Peng, S., Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 2005, 26B(2): 159-184. Google Scholar

[16]

Peng, S., G-Expectation, G-Brownian motion and related stochastic calculus of Itô’s type, In: Stochastic Analysis and Applications, Able Symposium, Abel Symposia 2, SpringerVerlag, 2007: 541-567. Google Scholar

[17]

Peng, S., Multi-Dimensional G-Brownian motion and related stochastic calculus under G-Expectation, Stochastic Processes and their Applications, 2008, 118: 2223-2253. doi: 10.1016/j.spa.2007.10.015.  Google Scholar

[18]

Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer, 2019. Google Scholar

[19]

Peng, S., A new central limit theorem under sublinear expectations, arXiv: 0803.2656v1, 2008. Google Scholar

[20]

Peng, S., Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A: Mathematics, 2009, 52(7): 1391-1411. doi: 10.1007/s11425-009-0121-8.  Google Scholar

[21]

Sato, K.-I., Lévy processes and infinitely divisible distributions, Cambridge University, 1999. Google Scholar

[1]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[2]

Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53

[3]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[4]

Yongxia Zhao, Rongming Wang, Chuancun Yin. Optimal dividends and capital injections for a spectrally positive Lévy process. Journal of Industrial & Management Optimization, 2017, 13 (1) : 1-21. doi: 10.3934/jimo.2016001

[5]

Karel Kadlec, Bohdan Maslowski. Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4039-4055. doi: 10.3934/dcdsb.2020137

[6]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[7]

Zhengyan Lin, Li-Xin Zhang. Convergence to a self-normalized G-Brownian motion. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 4-. doi: 10.1186/s41546-017-0013-8

[8]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[9]

Editorial Office. Retraction: Wei Gao and Juan L. G. Guirao, Preface. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : i-i. doi: 10.3934/dcdss.201904i

[10]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[11]

Francesca Biagini, Thilo Meyer-Brandis, Bernt Øksendal, Krzysztof Paczka. Optimal control with delayed information flow of systems driven by G-Brownian motion. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 8-. doi: 10.1186/s41546-018-0033-z

[12]

Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040

[13]

Adam Andersson, Felix Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4271-4294. doi: 10.3934/dcdsb.2019081

[14]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial & Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[15]

Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575

[16]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[17]

Rachel Chen, Jianqiang Hu, Yijie Peng. Simulation of Lévy-Driven models and its application in finance. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 749-765. doi: 10.3934/naco.2012.2.749

[18]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[19]

Chaman Kumar, Sotirios Sabanis. On tamed milstein schemes of SDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 421-463. doi: 10.3934/dcdsb.2017020

[20]

Xingchun Wang, Yongjin Wang. Hedging strategies for discretely monitored Asian options under Lévy processes. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1209-1224. doi: 10.3934/jimo.2014.10.1209

 Impact Factor: 

Article outline

[Back to Top]