[1]
|
Agram, N., Dynamic risk measure for BSVIE with jumps and semimartingale issues, Stochastic Analysis and Applications, 2019, 37(3): 1-16.
|
[2]
|
Aliprantis, C. D., Separable utility functions, Journal of Mathematical Economics, 1997, 28(4): 415-444.doi: 10.1016/S0304-4068(97)00805-7.
|
[3]
|
Andries, M., Eisenbach, T.M. and Schmalz, M.C., Horizon-dependent risk aversion and the timing and pricing of uncertainty. FRB of New York Staff Report 703, 2018.
|
[4]
|
Bansal, R. and Yaron, A., Risks for the long run: a potential resolution of asset pricing puzzles, The Journal of Finance, 2004, 59(4): 1481-1509.doi: 10.1111/j.1540-6261.2004.00670.x.
|
[5]
|
Barrieu, P. and El Karoui, N., Pricing, hedging and optimally designing derivatives via minimization of risk measures. In: Indifference Pricing: Theory and Applications, Carmona, R. (ed.), Princeton University Press, Princeton, 2005: 77−144.
|
[6]
|
Beissner, P., Lin, Q. and Riedel, F., Dynamic consistent α-maxmin expected utility. Center for Mathematical Economics. Working Paper 535, 2016.
|
[7]
|
Berg, T., The term structure of risk premia: new evidence from the financial crisis. ECB Working Paper Series No 1165, 2010.
|
[8]
|
Berger, M. A., A Malliavin-type anticipative stochastic calculus, The Annals of Probability, 1988, 16(1): 231-245.doi: 10.1214/aop/1176991897.
|
[9]
|
Berger, M. A. and Mizel, V. J., A Fubini theorem for iterated stochastic integrals, Bulletin of the American Mathematical Society, 1978, 84(1): 159-160.doi: 10.1090/S0002-9904-1978-14452-8.
|
[10]
|
Berger, M. A. and Mizel, V. J., Theorems of Fubini type for iterated stochastic integrals, Transactions of the American Mathematical Society, 1979, 252: 249-274.doi: 10.1090/S0002-9947-1979-0534121-3.
|
[11]
|
Berger, M. A. and Mizel, V. J., An extension of the stochastic integral, The Annals of Probability, 1982, 10(2): 435-450.doi: 10.1214/aop/1176993868.
|
[12]
|
Biagini, F., Föllmer, H. and Nedelcu, S., Shifting martingale measures and the birth of a bubble as a submartingale, Finance and Stochastics, 2014, 18(2): 297-326.doi: 10.1007/s00780-013-0221-8.
|
[13]
|
Binsbergen, v. J., Brandt, M. and Koijen, R., On the timing and pricing of dividends, The American Economic Review, 2012, 102(4): 1596-1618.doi: 10.1257/aer.102.4.1596.
|
[14]
|
Binsbergen, v. J., Hueskes, W., Koijen, R. and Vrugt, E., Equity yields, Journal of Financial Economics, 2013, 110(3): 503-519.doi: 10.1016/j.jfineco.2013.08.017.
|
[15]
|
Bismut, J.-M., Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 1973, 44(2): 384-404.doi: 10.1016/0022-247X(73)90066-8.
|
[16]
|
Björk, T., Arbitrage theory in continuous time, Oxford University Press, 2009.
|
[17]
|
Brunnermeier, M. K., Papakonstantinou, F. and Parker, J. A., Optimal time-inconsistent beliefs: misplaning, procrastination, and commitment, Working Paper, 2013.
|
[18]
|
Brunnermeier, M. K. and Parker, J. A., Optimal expectations, American Economic Review, 2005, 95(4): 1092-1118.doi: 10.1257/0002828054825493.
|
[19]
|
Campbell, J. Y. and Cochrane, J. H., By force of habit: a consumption-based explanation of aggregate Stock Market behavior, Journal of Political Economy, 1999, 107(2): 205-251.doi: 10.1086/250059.
|
[20]
|
Carmona, R. and Nadtochiy, S., Local volatility dynamic models, Finance and Stochastics, 2009, 13(1): 1-48.doi: 10.1007/s00780-008-0078-4.
|
[21]
|
Chen, Z. and Epstein, L., Ambiguity, risk, and asset returns in continuous time, Econometrica, 2002, 70(4): 1403-1443.doi: 10.1111/1468-0262.00337.
|
[22]
|
Coquet, F., Hu, Y., Mémin, J. and Peng, S., Filtration-consistent nonlinear expectations and related g-expectations, Probability Theory and Related Fields, 2002, 123(1): 1-27.doi: 10.1007/s004400100172.
|
[23]
|
Csiszar, I., I-Divergence geometry of probability distributions and minimization problems, Annals of Probability, 1975, 3(1): 146-158.doi: 10.1214/aop/1176996454.
|
[24]
|
Delbaen, F., Representing martingale measures when asset prices are continuous and bounded, Mathematical Finance, 1992, 2(2): 107-130.doi: 10.1111/j.1467-9965.1992.tb00041.x.
|
[25]
|
Delbaen, F., The structure of m-stable sets and in particular of the set of risk neutral measures. In Memoriam Paul-André Meyer, Springer, 2006: 215−258.
|
[26]
|
Delbaen, F., Peng, S. and Rosazza Gianin, E., Representation of the penalty term of dynamic concave utilities, Finance and Stochastics, 2010, 14(3): 449-472.doi: 10.1007/s00780-009-0119-7.
|
[27]
|
Delbaen, F. and Schachermayer, W., A general version of the fundamental theorem of asset pricing, Mathematische Annalen, 1994, 300(1): 463-520.doi: 10.1007/BF01450498.
|
[28]
|
Delong, L. and Imkeller, P., Backward stochastic differential equations with time delayed generators - results and counterexamples, The Annals of Applied Probability, 2010, 20(4): 1512-1536.doi: 10.1214/09-AAP663.
|
[29]
|
Detemple, J. and Rindisbacher, M., Dynamic asset allocation: Portfolio decomposition formula and applications, Review of Financial Studies, 2010, 23(1): 25-100.doi: 10.1093/rfs/hhp040.
|
[30]
|
Dos Reis, G. and Dos Reis, R. J. N., A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE, Stochastics and Dynamics, 2013, 13(04): 1350005.doi: 10.1142/S0219493713500056.
|
[31]
|
Duffie, D., Dynamic asset pricing theory. Princeton University Press, 1996.
|
[32]
|
Duffie, D. and Epstein, L. G., Stochastic differential utility, Econometrica, 1992, 60(2): 353-394.doi: 10.2307/2951600.
|
[33]
|
Duffie, D. and Skiadas, C., Continuous-time security pricing: A utility gradient approach, Journal of Mathematical Economics, 1994, 23(2): 107-131.doi: 10.1016/0304-4068(94)90001-9.
|
[34]
|
Eisenbach, T. M. and Schmalz, M. C., Anxiety in the face of risk, Journal of Financial Economics, 2016, 121(2): 414-426.doi: 10.1016/j.jfineco.2015.10.002.
|
[35]
|
El Karoui, N. and Quenez, M.-C., Dynamic programming and pricing of contingent claims in an incomplete market, SIAM Journal on Control and Optimization, 1995, 33(1): 29-66.doi: 10.1137/S0363012992232579.
|
[36]
|
El Karoui, N., Peng, S. and Quenez, M.-C., Backward stochastic differential equations in finance, Mathematical Finance, 1997, 7(1): 1-71.doi: 10.1111/1467-9965.00022.
|
[37]
|
Elliott, R., A discrete time equivalent martingale measure, Mathematical Finance, 1998, 8(2): 127-152.doi: 10.1111/1467-9965.00048.
|
[38]
|
Epstein, L.G., Farhi, E. and Strzalecki, T., How much would you pay to resolve long-run risk? American Economic Review, 2014, 104(9): 2680-97.doi: 10.1257/aer.104.9.2680.
|
[39]
|
Epstein, L. G. and Zin, S. E., Substitution, risk aversion, and the temporal behavior of consumption and asset returns: a theoretical framework, Econometrica, 1989, 57(9): 937-969.
|
[40]
|
Föllmer, H. and Schweizer, M., Hedging of contingent claims under incomplete information. In: Applied Stochastic Analysis (Davis M. H. A. and Elliott R. J. eds.), Stochastics Monographs, Gordon and Breach, London/New York, 1991, 5: 389-414.
|
[41]
|
Frittelli, M., The minimal entropy martingale measure and the valuation problem in incomplete markets, Mathematical Finance, 2000, 10(1): 39-52.doi: 10.1111/1467-9965.00079.
|
[42]
|
Gabaix, X., Variable rare disasters: an exactly solved framework for ten puzzles in Macro-Finance, The Quarterly Journal of Economics, 2012, 127(2): 645-700.doi: 10.1093/qje/qjs001.
|
[43]
|
Hansen, L. P., Heaton, J. C. and Li, N., Consumption strikes back? Measuring long-run risk, Journal of Political Economy, 2008, 116(2): 260-302.doi: 10.1086/588200.
|
[44]
|
Harrison, J. M. and Kreps, D. M., Martingales and arbitrage in multiperiod securities markets, Journal of Economic Theory, 1979, 20(3): 381-408.doi: 10.1016/0022-0531(79)90043-7.
|
[45]
|
Heath, D., Jarrow, R. and Morton, A., Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation, Econometrica, 1992, 60(1): 77-105.doi: 10.2307/2951677.
|
[46]
|
Hu, Y. and Øksendal, B., Linear Volterra backward stochastic integral equations, Stochastic Processes and their Applications, 2019, 129(2): 626-633.doi: 10.1016/j.spa.2018.03.016.
|
[47]
|
Jarrow, R., The pricing of commodity options with stochastic interest rates, Advances in Futures and Options Research, 1987, 2: 19-45.
|
[48]
|
Karatzas, I. and Kou, S. G., On the pricing of contingent claims under constraints, The Annals of Applied Probability, 1996, 6(2): 321-369.doi: 10.1214/aoap/1034968135.
|
[49]
|
Kobylanski, M., Backward stochastic differential equations and partial differential equations with quadratic growth, Annals of Probability, 2000: 558-602.
|
[50]
|
Kromer, E. and Overbeck, L., Differentiability of BSVIEs and dynamic capital allocations, International Journal of Theoretical and Applied Finance, 2017, 20(07): 1750047.doi: 10.1142/S0219024917500479.
|
[51]
|
Krusell, P. and Smith, A. A., Consumption−savings decisions with quasi−geometric discounting, Econometrica, 2003, 71(1): 365-375.doi: 10.1111/1468-0262.00400.
|
[52]
|
Kurz, M., On the structure and diversity of rational beliefs, Economic Theory, 1994, 4(6): 877-900.doi: 10.1007/BF01213817.
|
[53]
|
Lepeltier, J. P. and San Martin, J., Existence for BSDE with superlinear quadratic coefficient, Stochastics: An International Journal of Probability and Stochastic Processes, 1998, 63(3-4): 227-240.
|
[54]
|
Lettau, M. and Wachter, J. A., Why is long-horizon equity less risky? a duration-based explanation of the value premium, The Journal of Finance, 2007, 62(1): 55-92.doi: 10.1111/j.1540-6261.2007.01201.x.
|
[55]
|
Lucas, R.E., Asset prices in an exchange economy, Econometrica, 1978, 46(6): 1429-1445.doi: 10.2307/1913837.
|
[56]
|
Luo, P. and Tangpi, L., BSDEs on finite and infinite horizon with time-delayed generators, Working paper, http://arxiv.org/abs/1509.01991v1.
|
[57]
|
Mania, M. and Schweizer, M., Dynamic exponential utility indifference valuation, The Annals of Applied Probability, 2005, 15(3): 2113-2143.doi: 10.1214/105051605000000395.
|
[58]
|
Musiela, M. and Rutkowski, M., Continuous-time term structure models: forward measure approach, Finance and Stochastics, 1997, 1(4): 261-291.doi: 10.1007/s007800050025.
|
[59]
|
Palhares, D., Cash-flow maturity and risk premia in CDS markets, Working Paper, The University of Chicago Booth School of Business and Division of the Social Sciences, Department of Economics, 2013.
|
[60]
|
Pardoux, E. and Peng, S., Adapted solution of a backward stochastic differential equation, Systems and Control Letters, 1990, 14: 55-61.doi: 10.1016/0167-6911(90)90082-6.
|
[61]
|
Pelsser, A. and Stadje, M., Time-consistent and market-consistent evaluations, Mathematical Finance, 2014, 24(1): 25-65.doi: 10.1111/mafi.12026.
|
[62]
|
Peng, S., Backward SDE and related g-expectations. In: Backward Stochastic Differential Qquations, Pitman Research Notes in Mathematics Series (El Karoui N. and Mazliak L. eds.), Longman, Harlow, 1997, 364: 141−159.
|
[63]
|
Peng, S., Nonlinear expectations, nonlinear evaluations and risk measures. Stochastic Methods in Finance, Springer, 2004, 1856: 165−253.
|
[64]
|
Rosazza Gianin, E., Risk measures via g-expectations, Insurance: Mathematics and Economics, 2006, 39(1): 19-34.doi: 10.1016/j.insmatheco.2006.01.002.
|
[65]
|
Rouge, R. and El Karoui, N., Pricing via utility maximization and entropy, Mathematical Finance, 2000, 10(2): 259-276.doi: 10.1111/1467-9965.00093.
|
[66]
|
Schweizer, M. and Wissel, J., Term structures of implied volatilities: absence of arbitrage and existence results, Mathematical Finance, 2008, 18(1): 77-114.
|
[67]
|
Wang, T. and Yong, J., Comparison theorems for some backward stochastic Volterra integral equations, Stochastic Processes and Their Applications, 2015, 125(5): 1756-1798.doi: 10.1016/j.spa.2014.11.013.
|
[68]
|
Yong, J., Backward stochastic Volterra integral equations and some related problems, Stochastic Processes and Their Applications, 2006, 116(5): 779-795.doi: 10.1016/j.spa.2006.01.005.
|
[69]
|
Yong, J., Backward stochastic Volterra integral equations - a brief survey, Applied Mathematics-A Journal of Chinese Universities, 2013, 28(4): 383-394.doi: 10.1007/s11766-013-3189-4.
|
[70]
|
Yong, J., Continuous-time dynamic risk measures by backward stochastic Volterra integral equations, Applicable Analysis, 2007, 86(11): 1429-1442.doi: 10.1080/00036810701697328.
|
[71]
|
Zhang, J., Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Springer, 2017.
|