\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time

The authors wish to thank two Referees for their careful reading and for the useful remarks that contributed to improving the paper. This research started with the research group “Robust Finance: Strategic Power, Knightian Uncertainty, and the Foundations of Economic Policy Advice” at ZIF in Bielefeld, Germany. The financial support, as well as the stimulating discussions, are gratefully acknowledged. The authors also thank Fabio Bellini, Freddy Delbaen, Giulia Di Nunno, Frank Riedel, and Carlo Sgarra for comments. Emanuela Rosazza Gianin is also grateful to Bernt Øksendal for stimulating and helpful discussions on this subject and on BSVIEs.
Abstract / Introduction Full Text(HTML) Figure(2) / Table(1) Related Papers Cited by
  • Motivated by financial and empirical arguments and in order to introduce a more flexible methodology of pricing, we provide a new approach to asset pricing based on Backward Volterra equations. The approach relies on an arbitrage-free and incomplete market setting in continuous time by choosing non-unique pricing measures depending either on the time of evaluation or on the maturity of payoffs. We show that in the latter case the dynamics can be captured by a time-delayed backward stochastic Volterra integral equation here introduced which, to the best of our knowledge, has not yet been studied. We then prove an existence and uniqueness result for time-delayed backward stochastic Volterra integral equations. Finally, we present a Lucas-type consumption-based asset pricing model that justifies the emergence of stochastic discount factors matching the term structure of Sharpe ratios.

    Mathematics Subject Classification: 60H10; 60K35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Illustration of an EMM-string in the set $ {\cal Q} $ of equivalent martingale measures.

    Figure 2.  Two ways to employ the random field of SR $ \theta(t,\tau)_{t\leq \tau} $ . Method 1 uses the EMM-string at the time of evaluation; see (14). Method 2 uses the EMM-string at the maturity of the claim and employs the whole gray triangle; see (19).

    Table 1.  Summary of methods for pricing at time $ t $ . The first row is discussed in section 2.1. The recursive columns state the type of related backward stochastic equation. The SDF columns present the involved SDF. $ \psi $ is indexed by time–maturity pairs.

    Approach Claim $ X $ Payoff Stream $ \{x_\tau\}_{\tau\in[t,T]} $
    1 SDF 2 Recursive 3 SDF 4 Recursive
    $ p $ - classical $ \dfrac{\psi(T,T)}{\psi(t,t)} $ BSDE $ \left\{\dfrac{\psi(\tau,\tau)}{\psi(t,t)}\right\}_{\tau\in[t,T]} $ BSDE
    $ p^* $ - time $ \dfrac{\psi(t,T)}{\psi(t,t)} $ BSVIE $ \left\{\dfrac{\psi(t,\tau)}{\psi(t,t)}\right\}_{\tau\in[t,T]} $ BSVIE
    $ \hat p $ - maturity $ \dfrac{\psi(T,T)}{\psi(t,T)} $ BSDE $ \left\{\dfrac{\psi(\tau,\tau)}{\psi(t,\tau)}\right\}_{(t,\tau): \, t\leq\tau} $ TD–BSVIE
     | Show Table
    DownLoad: CSV
  • [1]

    Agram, N., Dynamic risk measure for BSVIE with jumps and semimartingale issues, Stochastic Analysis and Applications, 2019, 37(3): 1-16.

    [2]

    Aliprantis, C. D., Separable utility functions, Journal of Mathematical Economics, 1997, 28(4): 415-444.doi: 10.1016/S0304-4068(97)00805-7.

    [3] Andries, M., Eisenbach, T.M. and Schmalz, M.C., Horizon-dependent risk aversion and the timing and pricing of uncertainty. FRB of New York Staff Report 703, 2018.
    [4]

    Bansal, R. and Yaron, A., Risks for the long run: a potential resolution of asset pricing puzzles, The Journal of Finance, 2004, 59(4): 1481-1509.doi: 10.1111/j.1540-6261.2004.00670.x.

    [5] Barrieu, P. and El Karoui, N., Pricing, hedging and optimally designing derivatives via minimization of risk measures. In: Indifference Pricing: Theory and Applications, Carmona, R. (ed.), Princeton University Press, Princeton, 2005: 77−144.
    [6] Beissner, P., Lin, Q. and Riedel, F., Dynamic consistent α-maxmin expected utility. Center for Mathematical Economics. Working Paper 535, 2016.
    [7] Berg, T., The term structure of risk premia: new evidence from the financial crisis. ECB Working Paper Series No 1165, 2010.
    [8]

    Berger, M. A., A Malliavin-type anticipative stochastic calculus, The Annals of Probability, 1988, 16(1): 231-245.doi: 10.1214/aop/1176991897.

    [9]

    Berger, M. A. and Mizel, V. J., A Fubini theorem for iterated stochastic integrals, Bulletin of the American Mathematical Society, 1978, 84(1): 159-160.doi: 10.1090/S0002-9904-1978-14452-8.

    [10]

    Berger, M. A. and Mizel, V. J., Theorems of Fubini type for iterated stochastic integrals, Transactions of the American Mathematical Society, 1979, 252: 249-274.doi: 10.1090/S0002-9947-1979-0534121-3.

    [11]

    Berger, M. A. and Mizel, V. J., An extension of the stochastic integral, The Annals of Probability, 1982, 10(2): 435-450.doi: 10.1214/aop/1176993868.

    [12]

    Biagini, F., Föllmer, H. and Nedelcu, S., Shifting martingale measures and the birth of a bubble as a submartingale, Finance and Stochastics, 2014, 18(2): 297-326.doi: 10.1007/s00780-013-0221-8.

    [13]

    Binsbergen, v. J., Brandt, M. and Koijen, R., On the timing and pricing of dividends, The American Economic Review, 2012, 102(4): 1596-1618.doi: 10.1257/aer.102.4.1596.

    [14]

    Binsbergen, v. J., Hueskes, W., Koijen, R. and Vrugt, E., Equity yields, Journal of Financial Economics, 2013, 110(3): 503-519.doi: 10.1016/j.jfineco.2013.08.017.

    [15]

    Bismut, J.-M., Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 1973, 44(2): 384-404.doi: 10.1016/0022-247X(73)90066-8.

    [16] Björk, T., Arbitrage theory in continuous time, Oxford University Press, 2009.
    [17] Brunnermeier, M. K., Papakonstantinou, F. and Parker, J. A., Optimal time-inconsistent beliefs: misplaning, procrastination, and commitment, Working Paper, 2013.
    [18]

    Brunnermeier, M. K. and Parker, J. A., Optimal expectations, American Economic Review, 2005, 95(4): 1092-1118.doi: 10.1257/0002828054825493.

    [19]

    Campbell, J. Y. and Cochrane, J. H., By force of habit: a consumption-based explanation of aggregate Stock Market behavior, Journal of Political Economy, 1999, 107(2): 205-251.doi: 10.1086/250059.

    [20]

    Carmona, R. and Nadtochiy, S., Local volatility dynamic models, Finance and Stochastics, 2009, 13(1): 1-48.doi: 10.1007/s00780-008-0078-4.

    [21]

    Chen, Z. and Epstein, L., Ambiguity, risk, and asset returns in continuous time, Econometrica, 2002, 70(4): 1403-1443.doi: 10.1111/1468-0262.00337.

    [22]

    Coquet, F., Hu, Y., Mémin, J. and Peng, S., Filtration-consistent nonlinear expectations and related g-expectations, Probability Theory and Related Fields, 2002, 123(1): 1-27.doi: 10.1007/s004400100172.

    [23]

    Csiszar, I., I-Divergence geometry of probability distributions and minimization problems, Annals of Probability, 1975, 3(1): 146-158.doi: 10.1214/aop/1176996454.

    [24]

    Delbaen, F., Representing martingale measures when asset prices are continuous and bounded, Mathematical Finance, 1992, 2(2): 107-130.doi: 10.1111/j.1467-9965.1992.tb00041.x.

    [25] Delbaen, F., The structure of m-stable sets and in particular of the set of risk neutral measures. In Memoriam Paul-André Meyer, Springer, 2006: 215−258.
    [26]

    Delbaen, F., Peng, S. and Rosazza Gianin, E., Representation of the penalty term of dynamic concave utilities, Finance and Stochastics, 2010, 14(3): 449-472.doi: 10.1007/s00780-009-0119-7.

    [27]

    Delbaen, F. and Schachermayer, W., A general version of the fundamental theorem of asset pricing, Mathematische Annalen, 1994, 300(1): 463-520.doi: 10.1007/BF01450498.

    [28]

    Delong, L. and Imkeller, P., Backward stochastic differential equations with time delayed generators - results and counterexamples, The Annals of Applied Probability, 2010, 20(4): 1512-1536.doi: 10.1214/09-AAP663.

    [29]

    Detemple, J. and Rindisbacher, M., Dynamic asset allocation: Portfolio decomposition formula and applications, Review of Financial Studies, 2010, 23(1): 25-100.doi: 10.1093/rfs/hhp040.

    [30]

    Dos Reis, G. and Dos Reis, R. J. N., A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE, Stochastics and Dynamics, 2013, 13(04): 1350005.doi: 10.1142/S0219493713500056.

    [31] Duffie, D., Dynamic asset pricing theory. Princeton University Press, 1996.
    [32]

    Duffie, D. and Epstein, L. G., Stochastic differential utility, Econometrica, 1992, 60(2): 353-394.doi: 10.2307/2951600.

    [33]

    Duffie, D. and Skiadas, C., Continuous-time security pricing: A utility gradient approach, Journal of Mathematical Economics, 1994, 23(2): 107-131.doi: 10.1016/0304-4068(94)90001-9.

    [34]

    Eisenbach, T. M. and Schmalz, M. C., Anxiety in the face of risk, Journal of Financial Economics, 2016, 121(2): 414-426.doi: 10.1016/j.jfineco.2015.10.002.

    [35]

    El Karoui, N. and Quenez, M.-C., Dynamic programming and pricing of contingent claims in an incomplete market, SIAM Journal on Control and Optimization, 1995, 33(1): 29-66.doi: 10.1137/S0363012992232579.

    [36]

    El Karoui, N., Peng, S. and Quenez, M.-C., Backward stochastic differential equations in finance, Mathematical Finance, 1997, 7(1): 1-71.doi: 10.1111/1467-9965.00022.

    [37]

    Elliott, R., A discrete time equivalent martingale measure, Mathematical Finance, 1998, 8(2): 127-152.doi: 10.1111/1467-9965.00048.

    [38]

    Epstein, L.G., Farhi, E. and Strzalecki, T., How much would you pay to resolve long-run risk? American Economic Review, 2014, 104(9): 2680-97.doi: 10.1257/aer.104.9.2680.

    [39]

    Epstein, L. G. and Zin, S. E., Substitution, risk aversion, and the temporal behavior of consumption and asset returns: a theoretical framework, Econometrica, 1989, 57(9): 937-969.

    [40] Föllmer, H. and Schweizer, M., Hedging of contingent claims under incomplete information. In: Applied Stochastic Analysis (Davis M. H. A. and Elliott R. J. eds.), Stochastics Monographs, Gordon and Breach, London/New York, 1991, 5: 389-414.
    [41]

    Frittelli, M., The minimal entropy martingale measure and the valuation problem in incomplete markets, Mathematical Finance, 2000, 10(1): 39-52.doi: 10.1111/1467-9965.00079.

    [42]

    Gabaix, X., Variable rare disasters: an exactly solved framework for ten puzzles in Macro-Finance, The Quarterly Journal of Economics, 2012, 127(2): 645-700.doi: 10.1093/qje/qjs001.

    [43]

    Hansen, L. P., Heaton, J. C. and Li, N., Consumption strikes back? Measuring long-run risk, Journal of Political Economy, 2008, 116(2): 260-302.doi: 10.1086/588200.

    [44]

    Harrison, J. M. and Kreps, D. M., Martingales and arbitrage in multiperiod securities markets, Journal of Economic Theory, 1979, 20(3): 381-408.doi: 10.1016/0022-0531(79)90043-7.

    [45]

    Heath, D., Jarrow, R. and Morton, A., Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation, Econometrica, 1992, 60(1): 77-105.doi: 10.2307/2951677.

    [46]

    Hu, Y. and Øksendal, B., Linear Volterra backward stochastic integral equations, Stochastic Processes and their Applications, 2019, 129(2): 626-633.doi: 10.1016/j.spa.2018.03.016.

    [47]

    Jarrow, R., The pricing of commodity options with stochastic interest rates, Advances in Futures and Options Research, 1987, 2: 19-45.

    [48]

    Karatzas, I. and Kou, S. G., On the pricing of contingent claims under constraints, The Annals of Applied Probability, 1996, 6(2): 321-369.doi: 10.1214/aoap/1034968135.

    [49]

    Kobylanski, M., Backward stochastic differential equations and partial differential equations with quadratic growth, Annals of Probability, 2000: 558-602.

    [50]

    Kromer, E. and Overbeck, L., Differentiability of BSVIEs and dynamic capital allocations, International Journal of Theoretical and Applied Finance, 2017, 20(07): 1750047.doi: 10.1142/S0219024917500479.

    [51]

    Krusell, P. and Smith, A. A., Consumption−savings decisions with quasi−geometric discounting, Econometrica, 2003, 71(1): 365-375.doi: 10.1111/1468-0262.00400.

    [52]

    Kurz, M., On the structure and diversity of rational beliefs, Economic Theory, 1994, 4(6): 877-900.doi: 10.1007/BF01213817.

    [53]

    Lepeltier, J. P. and San Martin, J., Existence for BSDE with superlinear quadratic coefficient, Stochastics: An International Journal of Probability and Stochastic Processes, 1998, 63(3-4): 227-240.

    [54]

    Lettau, M. and Wachter, J. A., Why is long-horizon equity less risky? a duration-based explanation of the value premium, The Journal of Finance, 2007, 62(1): 55-92.doi: 10.1111/j.1540-6261.2007.01201.x.

    [55]

    Lucas, R.E., Asset prices in an exchange economy, Econometrica, 1978, 46(6): 1429-1445.doi: 10.2307/1913837.

    [56] Luo, P. and Tangpi, L., BSDEs on finite and infinite horizon with time-delayed generators, Working paper, http://arxiv.org/abs/1509.01991v1.
    [57]

    Mania, M. and Schweizer, M., Dynamic exponential utility indifference valuation, The Annals of Applied Probability, 2005, 15(3): 2113-2143.doi: 10.1214/105051605000000395.

    [58]

    Musiela, M. and Rutkowski, M., Continuous-time term structure models: forward measure approach, Finance and Stochastics, 1997, 1(4): 261-291.doi: 10.1007/s007800050025.

    [59] Palhares, D., Cash-flow maturity and risk premia in CDS markets, Working Paper, The University of Chicago Booth School of Business and Division of the Social Sciences, Department of Economics, 2013.
    [60]

    Pardoux, E. and Peng, S., Adapted solution of a backward stochastic differential equation, Systems and Control Letters, 1990, 14: 55-61.doi: 10.1016/0167-6911(90)90082-6.

    [61]

    Pelsser, A. and Stadje, M., Time-consistent and market-consistent evaluations, Mathematical Finance, 2014, 24(1): 25-65.doi: 10.1111/mafi.12026.

    [62] Peng, S., Backward SDE and related g-expectations. In: Backward Stochastic Differential Qquations, Pitman Research Notes in Mathematics Series (El Karoui N. and Mazliak L. eds.), Longman, Harlow, 1997, 364: 141−159.
    [63] Peng, S., Nonlinear expectations, nonlinear evaluations and risk measures. Stochastic Methods in Finance, Springer, 2004, 1856: 165−253.
    [64]

    Rosazza Gianin, E., Risk measures via g-expectations, Insurance: Mathematics and Economics, 2006, 39(1): 19-34.doi: 10.1016/j.insmatheco.2006.01.002.

    [65]

    Rouge, R. and El Karoui, N., Pricing via utility maximization and entropy, Mathematical Finance, 2000, 10(2): 259-276.doi: 10.1111/1467-9965.00093.

    [66]

    Schweizer, M. and Wissel, J., Term structures of implied volatilities: absence of arbitrage and existence results, Mathematical Finance, 2008, 18(1): 77-114.

    [67]

    Wang, T. and Yong, J., Comparison theorems for some backward stochastic Volterra integral equations, Stochastic Processes and Their Applications, 2015, 125(5): 1756-1798.doi: 10.1016/j.spa.2014.11.013.

    [68]

    Yong, J., Backward stochastic Volterra integral equations and some related problems, Stochastic Processes and Their Applications, 2006, 116(5): 779-795.doi: 10.1016/j.spa.2006.01.005.

    [69]

    Yong, J., Backward stochastic Volterra integral equations - a brief survey, Applied Mathematics-A Journal of Chinese Universities, 2013, 28(4): 383-394.doi: 10.1007/s11766-013-3189-4.

    [70]

    Yong, J., Continuous-time dynamic risk measures by backward stochastic Volterra integral equations, Applicable Analysis, 2007, 86(11): 1429-1442.doi: 10.1080/00036810701697328.

    [71] Zhang, J., Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Springer, 2017.
  • 加载中

Figures(2)

Tables(1)

SHARE

Article Metrics

HTML views(3495) PDF downloads(347) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return