March  2021, 6(1): 61-98. doi: 10.3934/puqr.2021004

Stochastic ordering by g-expectations

School of Physical and Mathematical Sciences, Division of Mathematical Sciences, Nanyang Technological University, Singapore 637371

Email: lysel001@e.ntu.edu.sg, nprivault@ntu.edu.sg

Received  October 31, 2019 Accepted  January 06, 2021 Published  March 2021

Fund Project: This research is supported by the Ministry of Education, Singapore (Grant No. MOE2018-T1-001-201)

We derive sufficient conditions for the convex and monotonic g-stochastic ordering of diffusion processes under nonlinear g-expectations and g-evaluations. Our approach relies on comparison results for forward-backward stochastic differential equations and on several extensions of convexity, monotonicity, and continuous dependence properties for the solutions of associated semilinear parabolic partial differential equations. Applications to contingent claim price comparison under different hedging portfolio constraints are provided.

Citation: Sel Ly, Nicolas Privault. Stochastic ordering by g-expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 61-98. doi: 10.3934/puqr.2021004
References:
[1]

Alvarez, O., Lasry, J.-M. and Lions, P.-L., Convex viscosity solutions and state constraints, J. Math. Pures Appl., 1997, 16(3): 265-288. Google Scholar

[2]

Arnaudon, M., Breton, J.-C. and Privault, N., Convex ordering for random vectors using predictable representation, Potential Anal., 2008, 29(4): 327-349. doi: 10.1007/s11118-008-9100-x.  Google Scholar

[3]

Azagra, D., Global and fine approximation of convex functions, Proc. Lond. Math. Soc., 2013, 107(4): 799-824. doi: 10.1112/plms/pds099.  Google Scholar

[4]

Belzunce, F., Riquelme, C. M. and Mulero, J., An Introduction to Stochastic Orders, Academic Press, 2015. Google Scholar

[5]

Bergenthum, J. and Rüschendorf, L., Comparison of option prices in semimartingale models, Finance and Stochastics, 2006, 10(2): 229-249. Google Scholar

[6]

Bergenthum, J. and Rüschendorf, L., Comparison of semimartingales and Lévy processes, Ann. Probab., 2007, 35(1): 228-254. Google Scholar

[7]

Bian, B. and Guan, P., Convexity preserving for fully nonlinear parabolic integro-differential equations, Methods Appl. Anal., 2008, 15(1): 39-51. Google Scholar

[8]

Bian, B. and Guan, P., A microscopic convexity principle for nonlinear partial differential equations, Invent. Math., 2009, 177: 307-335. doi: 10.1007/s00222-009-0179-5.  Google Scholar

[9]

Bismut, J. M., Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 1973, 44(2): 384-404. doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[10]

Briand, P., Coquet, F., Hu, Y., Memin, J. and Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectation, Electron. Comm. Probab., 2000, 5: 101-117. doi: 10.1214/ECP.v5-1025.  Google Scholar

[11]

Chen, Z. and Epstein, L., Ambiguity, risk, and asset returns in continuous time, Econometrica, 2002, 70(4): 1403-1443. doi: 10.1111/1468-0262.00337.  Google Scholar

[12]

Chen, Z. and Peng, S., A general downcrossing inequality for g-martingales, Statist. Probab. Lett., 2000, 46(2): 169-175. doi: 10.1016/S0167-7152(99)00102-9.  Google Scholar

[13]

Chen, Z., Kulperger, R. and Jiang, L., Jensen’s inequality for g-expectation: part 2, C. R. Math. Acad. Sci. Paris, 2003, 337(12): 797-800. doi: 10.1016/j.crma.2003.09.037.  Google Scholar

[14]

Chen, Z., Chen, T. and Davison, M., Choquet expectation and Peng’s g-expectation, Ann. Probab., 2005, 33(3): 1179-1199. doi: 10.1214/009117904000001053.  Google Scholar

[15]

Denuit, M., Dhaene, J., Goovaerts, M. and Kaas, R., Actuarial Theory for Dependent Risks: Measures, Orders and Models. Wiley, 2005. Google Scholar

[16]

Douglas, J., Ma, J. and Protter, P., Numerical methods for forward-backward stochastic differential equations, Ann. Appl. Probab., 1996, 6(3): 940-968. doi: 10.1214/aoap/1034968235.  Google Scholar

[17]

El Karoui, N., Peng, S. and Quenez, M. C., Backward stochastic differential equations in finance, Mathematical Finance, 1997, 7(1): 1-71. doi: 10.1111/1467-9965.00022.  Google Scholar

[18]

El Karoui, N., Jeanblanc, M. and Shreve, S., Robustness of the Black and Scholes formula, Math. Finance, 1998, 8(2): 93-126. doi: 10.1111/1467-9965.00047.  Google Scholar

[19]

Epstein, L. G. and Ji, S., Ambiguous volatility and asset pricing in continuous time, The Review of Financial Studies, 2013, 26(7): 1740-1786. doi: 10.1093/rfs/hht018.  Google Scholar

[20]

Epstein, L. G. and Ji, S., Ambiguous volatility, possibility and utility in continuous time, Journal of Mathematical Economics, 2014, 50: 269-282. doi: 10.1016/j.jmateco.2013.09.005.  Google Scholar

[21]

Giga, Y., Goto, S., Ishii, H. and Sato, M.-H., Comparison principle and convexity properties for singular degenerate parabolic equations on unbounded domains, Indiana University Mathematics Journal, 1991, 40(2): 443-470. doi: 10.1512/iumj.1991.40.40023.  Google Scholar

[22]

Grigorova, M., Stochastic dominance with respect to a capacity and risk measures, Statistics & Risk Modeling, 2014a, 31(3-4): 259-295. Google Scholar

[23]

Grigorova, M., Stochastic orderings with respect to a capacity and an application to a financial optimization problem, Statistics & Risk Modeling, 2014b, 31(2): 183-213. Google Scholar

[24]

Gushchin, A. A. and Mordecki, E., Bounds on option prices for semimartingale market models, Proceeding of the Steklov Institute of Mathematics, 2002, 273: 73-113. Google Scholar

[25]

Jakobsen, E. R. and Karlsen, K. H., Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations, J. Differential Equations, 2002, 183(2): 497-525. doi: 10.1006/jdeq.2001.4136.  Google Scholar

[26]

Jiang, Y., Luo, P., Wang, L. and Xiong, D., Utility maximization under g*-expectation, Stochastic Analysis and Applications, 2016, 34(4): 644-661. doi: 10.1080/07362994.2016.1165121.  Google Scholar

[27]

Jouini, E. and Kallal, H., Arbitrage in securities markets with short-sales constraints, Mathematical finance, 1995, 5(3): 197-232. doi: 10.1111/j.1467-9965.1995.tb00065.x.  Google Scholar

[28]

Klein, Th., Ma, Y. and Privault, N., Convex concentration inequalities via forward-backward stochastic calculus. Electron. J. Probab., 2006, 11: 486-512. Google Scholar

[29]

Ladyženskaja, O. A., Solonnikov, V. A. and Ural0ceva, N., Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Provid, R.I., 1968. Google Scholar

[30]

Lepeltier, J.-P. and San Martin, J., Backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett., 1997, 32: 425-430. doi: 10.1016/S0167-7152(96)00103-4.  Google Scholar

[31]

Levy, H., Stochastic dominance: Investment decision making under uncertainty. Springer-Verlag, 2015. Google Scholar

[32]

Lions, P.-L. and Musiela, M., Convexity of solutions of parabolic equations, C. R. Math. Acad. Sci. Paris, 2006, 342: 915-921. doi: 10.1016/j.crma.2006.02.014.  Google Scholar

[33]

Ma, J. and Yong, J., Forward-backward stochastic differential equations and their applications, volume 1702 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999. Google Scholar

[34]

Ma, J., Protter, P. and Yong, J., Solving forward-backward stochastic differential equations explicitly - a four step scheme, Probab. Theory Relat. Fields, 1994, 98: 339-359. doi: 10.1007/BF01192258.  Google Scholar

[35]

Ma, Y. T. and Privault, N., Convex concentration for additive functionals of jump stochastic differential equations, Acta Math. Sin. (Engl. Ser.), 2013, 29: 1449-1458. doi: 10.1007/s10114-013-2635-9.  Google Scholar

[36]

Mishura, Y. and Shevchenko, G., Theory and Statistical Applications of Stochastic Processes, John Wiley & Sons, 2017. Google Scholar

[37]

Müller, A. and Stoyan, D., Comparison methods for stochastic models and risks, Wiley Series in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 2002. Google Scholar

[38]

Pardoux É., Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, In: Stochastic Analysis and Related Topics VI, Progress in Probability, Birkhäuser, Boston, MA, 1998: 42. https://doi.org/10.1007/978-1-4612-2022-0_2. Google Scholar

[39]

Pardoux, É. and Peng, S., Adapted solution of a backward stochastic differential equation, Systems & Control Letters, 1990, 14(1): 55-61. Google Scholar

[40]

Pardoux, É. and Peng, S., Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Stochastic Partial Differential Equations and Their Applications, Lecture Notes in Control and Inform. Sci., Springer, Berlin, 1992, 176: 200-217. Google Scholar

[41]

Peng, S., Backward SDE and related g-expectation. In: Backward Stochastic Differential Equations, Pitman Res. Notes Math. Ser., Longman, Harlow, 1997, 364: 141-159. Google Scholar

[42]

Peng, S., Nonlinear expectations, nonlinear evaluations and risk measures. In: Stochastic Methods in Finance, Lecture Notes in Math., Springer, Berlin, 2004, 1856: 165-253. Google Scholar

[43]

Peng, S., Nonlinear expectations and stochastic calculus under uncertainty, Preprint arXiv: 1002.4546v1, 2010a. Google Scholar

[44]

Peng, S., Backward stochastic differential equation, nonlinear expectation and their applications. In: Proceedings of the International Congress of Mathematicians, Hindustan Book Agency, New Delhi, 2010b, I: 393-432. Google Scholar

[45]

Perrakis, S., Stochastic Dominance Option Pricing: An Alternative Approach to Option Market Research. Springer, 2019. Google Scholar

[46]

Rosazza-Gianin, E., Risk measures via g-expectations, Insurance Math. Econom., 2006, 39(1): 19-34. doi: 10.1016/j.insmatheco.2006.01.002.  Google Scholar

[47]

Shaked, M. and Shanthikumar, G., Stochastic orders, Springer, 2007. Google Scholar

[48]

Sriboonchita, S., Wong, W. K., Dhompongsa, S. and Nguyen, H. T., Stochastic Dominance and Applications to Finance, Risk and Economics, Chapman & Hall/CRC, 2009. Google Scholar

[49]

Tian, D. and Jiang, L., Uncertainty orders on the sublinear expectation space, Open Mathematics, 2016, 14(1): 247-259. doi: 10.1515/math-2016-0023.  Google Scholar

[50]

Zhang, J., Backward stochastic differential equations, In: Probability Theory and Stochastic Modelling, Springer, New York, 2017, 86. Google Scholar

show all references

References:
[1]

Alvarez, O., Lasry, J.-M. and Lions, P.-L., Convex viscosity solutions and state constraints, J. Math. Pures Appl., 1997, 16(3): 265-288. Google Scholar

[2]

Arnaudon, M., Breton, J.-C. and Privault, N., Convex ordering for random vectors using predictable representation, Potential Anal., 2008, 29(4): 327-349. doi: 10.1007/s11118-008-9100-x.  Google Scholar

[3]

Azagra, D., Global and fine approximation of convex functions, Proc. Lond. Math. Soc., 2013, 107(4): 799-824. doi: 10.1112/plms/pds099.  Google Scholar

[4]

Belzunce, F., Riquelme, C. M. and Mulero, J., An Introduction to Stochastic Orders, Academic Press, 2015. Google Scholar

[5]

Bergenthum, J. and Rüschendorf, L., Comparison of option prices in semimartingale models, Finance and Stochastics, 2006, 10(2): 229-249. Google Scholar

[6]

Bergenthum, J. and Rüschendorf, L., Comparison of semimartingales and Lévy processes, Ann. Probab., 2007, 35(1): 228-254. Google Scholar

[7]

Bian, B. and Guan, P., Convexity preserving for fully nonlinear parabolic integro-differential equations, Methods Appl. Anal., 2008, 15(1): 39-51. Google Scholar

[8]

Bian, B. and Guan, P., A microscopic convexity principle for nonlinear partial differential equations, Invent. Math., 2009, 177: 307-335. doi: 10.1007/s00222-009-0179-5.  Google Scholar

[9]

Bismut, J. M., Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 1973, 44(2): 384-404. doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[10]

Briand, P., Coquet, F., Hu, Y., Memin, J. and Peng, S., A converse comparison theorem for BSDEs and related properties of g-expectation, Electron. Comm. Probab., 2000, 5: 101-117. doi: 10.1214/ECP.v5-1025.  Google Scholar

[11]

Chen, Z. and Epstein, L., Ambiguity, risk, and asset returns in continuous time, Econometrica, 2002, 70(4): 1403-1443. doi: 10.1111/1468-0262.00337.  Google Scholar

[12]

Chen, Z. and Peng, S., A general downcrossing inequality for g-martingales, Statist. Probab. Lett., 2000, 46(2): 169-175. doi: 10.1016/S0167-7152(99)00102-9.  Google Scholar

[13]

Chen, Z., Kulperger, R. and Jiang, L., Jensen’s inequality for g-expectation: part 2, C. R. Math. Acad. Sci. Paris, 2003, 337(12): 797-800. doi: 10.1016/j.crma.2003.09.037.  Google Scholar

[14]

Chen, Z., Chen, T. and Davison, M., Choquet expectation and Peng’s g-expectation, Ann. Probab., 2005, 33(3): 1179-1199. doi: 10.1214/009117904000001053.  Google Scholar

[15]

Denuit, M., Dhaene, J., Goovaerts, M. and Kaas, R., Actuarial Theory for Dependent Risks: Measures, Orders and Models. Wiley, 2005. Google Scholar

[16]

Douglas, J., Ma, J. and Protter, P., Numerical methods for forward-backward stochastic differential equations, Ann. Appl. Probab., 1996, 6(3): 940-968. doi: 10.1214/aoap/1034968235.  Google Scholar

[17]

El Karoui, N., Peng, S. and Quenez, M. C., Backward stochastic differential equations in finance, Mathematical Finance, 1997, 7(1): 1-71. doi: 10.1111/1467-9965.00022.  Google Scholar

[18]

El Karoui, N., Jeanblanc, M. and Shreve, S., Robustness of the Black and Scholes formula, Math. Finance, 1998, 8(2): 93-126. doi: 10.1111/1467-9965.00047.  Google Scholar

[19]

Epstein, L. G. and Ji, S., Ambiguous volatility and asset pricing in continuous time, The Review of Financial Studies, 2013, 26(7): 1740-1786. doi: 10.1093/rfs/hht018.  Google Scholar

[20]

Epstein, L. G. and Ji, S., Ambiguous volatility, possibility and utility in continuous time, Journal of Mathematical Economics, 2014, 50: 269-282. doi: 10.1016/j.jmateco.2013.09.005.  Google Scholar

[21]

Giga, Y., Goto, S., Ishii, H. and Sato, M.-H., Comparison principle and convexity properties for singular degenerate parabolic equations on unbounded domains, Indiana University Mathematics Journal, 1991, 40(2): 443-470. doi: 10.1512/iumj.1991.40.40023.  Google Scholar

[22]

Grigorova, M., Stochastic dominance with respect to a capacity and risk measures, Statistics & Risk Modeling, 2014a, 31(3-4): 259-295. Google Scholar

[23]

Grigorova, M., Stochastic orderings with respect to a capacity and an application to a financial optimization problem, Statistics & Risk Modeling, 2014b, 31(2): 183-213. Google Scholar

[24]

Gushchin, A. A. and Mordecki, E., Bounds on option prices for semimartingale market models, Proceeding of the Steklov Institute of Mathematics, 2002, 273: 73-113. Google Scholar

[25]

Jakobsen, E. R. and Karlsen, K. H., Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations, J. Differential Equations, 2002, 183(2): 497-525. doi: 10.1006/jdeq.2001.4136.  Google Scholar

[26]

Jiang, Y., Luo, P., Wang, L. and Xiong, D., Utility maximization under g*-expectation, Stochastic Analysis and Applications, 2016, 34(4): 644-661. doi: 10.1080/07362994.2016.1165121.  Google Scholar

[27]

Jouini, E. and Kallal, H., Arbitrage in securities markets with short-sales constraints, Mathematical finance, 1995, 5(3): 197-232. doi: 10.1111/j.1467-9965.1995.tb00065.x.  Google Scholar

[28]

Klein, Th., Ma, Y. and Privault, N., Convex concentration inequalities via forward-backward stochastic calculus. Electron. J. Probab., 2006, 11: 486-512. Google Scholar

[29]

Ladyženskaja, O. A., Solonnikov, V. A. and Ural0ceva, N., Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Provid, R.I., 1968. Google Scholar

[30]

Lepeltier, J.-P. and San Martin, J., Backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett., 1997, 32: 425-430. doi: 10.1016/S0167-7152(96)00103-4.  Google Scholar

[31]

Levy, H., Stochastic dominance: Investment decision making under uncertainty. Springer-Verlag, 2015. Google Scholar

[32]

Lions, P.-L. and Musiela, M., Convexity of solutions of parabolic equations, C. R. Math. Acad. Sci. Paris, 2006, 342: 915-921. doi: 10.1016/j.crma.2006.02.014.  Google Scholar

[33]

Ma, J. and Yong, J., Forward-backward stochastic differential equations and their applications, volume 1702 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999. Google Scholar

[34]

Ma, J., Protter, P. and Yong, J., Solving forward-backward stochastic differential equations explicitly - a four step scheme, Probab. Theory Relat. Fields, 1994, 98: 339-359. doi: 10.1007/BF01192258.  Google Scholar

[35]

Ma, Y. T. and Privault, N., Convex concentration for additive functionals of jump stochastic differential equations, Acta Math. Sin. (Engl. Ser.), 2013, 29: 1449-1458. doi: 10.1007/s10114-013-2635-9.  Google Scholar

[36]

Mishura, Y. and Shevchenko, G., Theory and Statistical Applications of Stochastic Processes, John Wiley & Sons, 2017. Google Scholar

[37]

Müller, A. and Stoyan, D., Comparison methods for stochastic models and risks, Wiley Series in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 2002. Google Scholar

[38]

Pardoux É., Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, In: Stochastic Analysis and Related Topics VI, Progress in Probability, Birkhäuser, Boston, MA, 1998: 42. https://doi.org/10.1007/978-1-4612-2022-0_2. Google Scholar

[39]

Pardoux, É. and Peng, S., Adapted solution of a backward stochastic differential equation, Systems & Control Letters, 1990, 14(1): 55-61. Google Scholar

[40]

Pardoux, É. and Peng, S., Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Stochastic Partial Differential Equations and Their Applications, Lecture Notes in Control and Inform. Sci., Springer, Berlin, 1992, 176: 200-217. Google Scholar

[41]

Peng, S., Backward SDE and related g-expectation. In: Backward Stochastic Differential Equations, Pitman Res. Notes Math. Ser., Longman, Harlow, 1997, 364: 141-159. Google Scholar

[42]

Peng, S., Nonlinear expectations, nonlinear evaluations and risk measures. In: Stochastic Methods in Finance, Lecture Notes in Math., Springer, Berlin, 2004, 1856: 165-253. Google Scholar

[43]

Peng, S., Nonlinear expectations and stochastic calculus under uncertainty, Preprint arXiv: 1002.4546v1, 2010a. Google Scholar

[44]

Peng, S., Backward stochastic differential equation, nonlinear expectation and their applications. In: Proceedings of the International Congress of Mathematicians, Hindustan Book Agency, New Delhi, 2010b, I: 393-432. Google Scholar

[45]

Perrakis, S., Stochastic Dominance Option Pricing: An Alternative Approach to Option Market Research. Springer, 2019. Google Scholar

[46]

Rosazza-Gianin, E., Risk measures via g-expectations, Insurance Math. Econom., 2006, 39(1): 19-34. doi: 10.1016/j.insmatheco.2006.01.002.  Google Scholar

[47]

Shaked, M. and Shanthikumar, G., Stochastic orders, Springer, 2007. Google Scholar

[48]

Sriboonchita, S., Wong, W. K., Dhompongsa, S. and Nguyen, H. T., Stochastic Dominance and Applications to Finance, Risk and Economics, Chapman & Hall/CRC, 2009. Google Scholar

[49]

Tian, D. and Jiang, L., Uncertainty orders on the sublinear expectation space, Open Mathematics, 2016, 14(1): 247-259. doi: 10.1515/math-2016-0023.  Google Scholar

[50]

Zhang, J., Backward stochastic differential equations, In: Probability Theory and Stochastic Modelling, Springer, New York, 2017, 86. Google Scholar

[1]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[2]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[3]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[4]

Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001

[5]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[6]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[7]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[8]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[9]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[10]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[11]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[12]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[13]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021024

[14]

Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267

[15]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[16]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[17]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[18]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383

[20]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2829-2871. doi: 10.3934/dcds.2020388

 Impact Factor: 

Metrics

  • PDF downloads (31)
  • HTML views (72)
  • Cited by (0)

Other articles
by authors

[Back to Top]