\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Correlated squared returns

Abstract / Introduction Full Text(HTML) Figure(5) / Table(12) Related Papers Cited by
  • Joint densities for a sequential pair of returns with weak autocorrelation and strong correlation in squared returns are formulated. The marginal return densities are either variance gamma or bilateral gamma. Two-dimensional matching of empirical characteristic functions to its theoretical counterpart is employed for dependency parameter estimation. Estimations are reported for 3920 daily return sequences of one thousand days. Path simulation is done using conditional distribution functions. The paths display levels of squared return correlation and decay rates for the squared return autocorrelation function that are comparable to these magnitudes in daily return data. Regressions of log characteristic functions at different time points are used to estimate time scaling coefficients. Regressions of these time scaling coefficients on squared return correlations support the view that autocorrelation in squared returns slows the rate of passage of economic time. An analysis of financial markets for 2020 in comparison with 2019 displays a post-COVID slowdown in financial markets.

    Mathematics Subject Classification: G11, G13, G17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Fit of Variance Gamma (VG) and Bilateral Gamma (BG) to the stationary equilibrium return distribution of a GARCH(1,1) process. The observed tail probabilities are represented by circles. The VG and BG model tail probabilities are shown by red and black dots.

    Figure 2.  Sample paths for 63 days of returns from VGCTC and BGCTC. The VGCTC paths employ Cases 7 and 2 from the respective Tables of representative parameter values.

    Figure 3.  Bilateral Gamma parameter quantiles for the return at the five-, ten-, fifteen-, and twenty-day horizons. The parameters were fit to simulated returns for the period using a 512 point quantization of the full set of 3920 estimated parameter values. Presented are the quantiles for the 512 sets of long horizon return densities.

    Figure 4.  VGCTC second-period variance conditional on the first-period squared return. The eight cases refer to Table 2.

    Figure 5.  BGCTC second-period variance conditional on the first-period squared return. The eight cases refer to Table 4.

    Table 1.  Parameter quantiles for VGCTC. Displayed are the quantiles for VGCTC model parameters estimated for data on a thousand returns for 196 stocks taken at 20 randomly selected end dates between January 2008 and December 2019.

    Quantile $\sigma$ $\nu$ $\theta$ $\alpha$
    1 0.0215 0.2098 2.1693 0.02
    5 0.1321 0.3169 6.2207 0.02
    10 0.1481 0.3785 8.5184 0.02
    25 0.1819 0.4843 11.867 0.3091
    50 0.2316 0.6068 15.575 0.5431
    75 0.3148 0.7485 20.244 0.7738
    90 0.4367 0.9314 26.874 0.9795
    95 0.5278 1.1636 36.265 0.98
    99 0.6602 6.5334 255.21 0.98
     | Show Table
    DownLoad: CSV

    Table 2.  Representative VGCTC parameters. The 3920 parameter sets for 196 stocks taken at 20 randomly selected end dates for data on a thousand returns were quantized into 8 representative centroids. The final column shows the proportion represented by each centroid.

    Case $\sigma$ $\nu$ $\theta$ $\alpha$ Prop.
    1 0.0153 0.5785 0.0015 0.9038 15.43
    2 0.0144 0.5605 0.0016 0.6572 11.12
    3 0.0175 0.7606 0.0017 0.6935 14.65
    4 0.0194 0.7224 0.0017 0.3558 17.51
    5 0.0126 0.3350 0.0014 0.9397 10.94
    6 0.0285 1.1169 0.0040 0.4664 8.62
    7 0.0146 0.4685 0.0015 0.5550 10.13
    8 0.0156 0.4822 0.0016 0.3177 11.60
     | Show Table
    DownLoad: CSV

    Table 3.  Parameter quantiles for BGCTC. Displayed are quantiles of estimated parameters for the BGCTC model. Estimates were obtained for 196 stocks taken at 20 random end dates with a thousand prior returns between January 2008 and December 2019.

    Quantile $b_{p}$ $c_{p}$ $b_{n}$ $c_{n}$ $\alpha$
    1 0 0.1782 0.0033 0.1615 0.02
    5 0.0043 0.9129 0.0042 0.8294 0.02
    10 0.0050 1.0638 0.0048 0.9918 0.02
    25 0.0064 1.3026 0.0062 1.2678 0.2526
    50 0.0084 1.5988 0.0082 1.5789 0.5010
    75 0.0118 2.0148 0.0120 2.0002 0.7316
    90 0.0171 2.5118 0.0186 2.5029 0.9339
    95 0.0215 2.9618 0.0256 2.9599 0.98
    99 0.0327 4.4274 0.5241 4.3772 0.98
     | Show Table
    DownLoad: CSV

    Table 4.  Representative parameter sets for BGCTC. The 3920 parameter estimates for 196 stocks taken at 20 random end dates between January 2008 and December 2019 were quantized into eight centroids. The last column shows the proportions of points represented by each centroid.

    Case $b_{p}$ $c_{p}$ $b_{n}$ $c_{n}$ $\alpha$ Prop.
    1 0.0091 1.5746 0.0102 1.3424 0.9284 10.67
    2 0.0076 1.9910 0.0080 1.7468 0.9532 18.29
    3 0.0050 3.5498 0.0058 2.8806 0.8854 8.20
    4 0.0087 1.7630 0.0102 1.3803 0.2893 9.52
    5 0.0091 1.7250 0.0098 1.5000 0.9541 10.58
    6 0.0115 1.3579 0.0125 1.1849 0.7729 17.00
    7 0.0064 2.4888 0.0073 2.0861 0.9140 13.14
    8 0.0158 1.0939 0.0178 0.9166 0.3755 12.60
     | Show Table
    DownLoad: CSV

    Table 5.  Squared return correlations. For 196 stocks taken at 20 random end dates squared return correlations were estimated from paths of 252 days. For the data column, they were prior returns. For the models they were from a single simulated path using estimated parameter values based on a thousand days of data.

    Quantile Data VGCTC BGCTC
    1 0.0265 0.1034 0.1457
    5 0.0605 0.1659 0.1928
    10 0.0913 0.1906 0.2279
    25 0.1639 0.2352 0.2983
    50 0.2459 0.2850 0.3474
    75 0.3187 0.3281 0.4076
    90 0.3820 0.3649 0.4646
    95 0.4241 0.3936 0.4912
    99 0.4972 0.4786 0.5449
     | Show Table
    DownLoad: CSV

    Table 6.  Decay rate quantiles. For 196 stocks and 20 randomly selected end dates between January 2008 and December 2019 from a sequence of 252 squared returns an autocorrelation function was computed. The log autocorrelation function was regressed on the logarithm of the time lag. Displayed are quantiles for slope coefficients. The data column employed return sequences. The models used paths simulated from parameter estimates.

    Quantile Data VGCTC BGCTC
    1 −0.0718 −0.0580 −0.0210
    5 −0.0175 −0.0249 0.0436
    10 0.0055 −0.0075 0.0726
    25 0.0482 0.0238 0.1158
    50 0.1100 0.0610 0.1943
    75 0.1888 0.1105 0.3393
    90 0.2843 0.1714 0.6415
    95 0.3520 0.2206 0.9243
    99 0.5271 0.2760 1.6103
     | Show Table
    DownLoad: CSV

    Table 7.  VGCTC scaling coefficient quantiles. Displayed are quantiles of scaling coefficients. The coefficients are obtained by regressing the empirical cumulant at the longer horizon on the same for the shorter horizon. The empirical cumulant is based on 10000 simulated VGCTC paths.

    Quantile $c_{5,10}$ $c_{5,15}$ $c_{5,20}$
    1 0.6178 0.6160 0.6271
    5 0.6774 0.6808 0.6821
    10 0.7203 0.7177 0.7187
    25 0.7776 0.7768 0.7695
    50 0.8545 0.8548 0.8453
    75 0.9601 0.9625 0.9423
    90 1.0890 1.0886 1.0803
    95 1.1828 1.2213 1.2029
    99 2.0039 3.0077 4.0080
     | Show Table
    DownLoad: CSV

    Table 8.  BGCTC scaling coefficient quantiles. Displayed are quantiles of scaling coefficients. The coefficients are obtained by regressing the empirical cumulant at the longer horizon on the same for the shorter horizon. The empirical cumulant is based on 10000 simulated BGCTC paths.

    Quantile $c_{5,10}$ $c_{5,15} $ $c_{5,20}$
    1 0.6673 0.6851 0.6513
    5 0.7673 0.7741 0.7568
    10 0.8164 0.8346 0.8125
    25 0.9364 0.9462 0.9453
    50 1.2345 1.2530 1.2425
    75 1.9509 2.3806 2.4516
    90 2.0126 3.0054 4.0017
    95 2.0346 3.0318 4.0375
    99 2.1364 3.1371 4.1237
     | Show Table
    DownLoad: CSV

    Table 9.  Regression of time scaling coefficients on squared return correlations (SQRC) dependent. Presented are the results of regressing time scaling coefficients at the ten-, fifteen-, and twenty-day horizon on the associated squared return correlations. t-statistics in parenthesis.

    Variable Constant SQRC
    VGCTC
    $c_{5,10}$ 0.9391 −0.2335
    (62.48) −(4.66)
    $c_{5,15}$ 0.9715 −0.3410
    (66.91) (−6.71)
    $c_{5,20}$ 0.9398 −0.2758
    (62.38) −(5.49)
    BGCTC
    $c_{5,10}$ 1.9408 −2.6867
    (87.57) (−30.06)
    $c_{5,15}$ 2.6457 −4.8397
    (66.91) (−30.35)
    $c_{5,20}$ 3.2558 −6.8205
    (58.23) (−30.25)
     | Show Table
    DownLoad: CSV

    Table 10.  p-value quantiles. Presented are selected quantiles of p-values for distributional equality between 2019 and 2020 for 824 stocks.

    Quantile p-value
    1 2.92e−9
    5 2.8e−7
    10 5.92e−6
    25 0.00022
    50 0.0061
    75 0.0466
    90 0.1862
    95 0.3316
    99 0.6267
     | Show Table
    DownLoad: CSV

    Table 11.  Bilateral gamma parameter quantiles.

    Quantile 2019 2020
    $b_{p}$ $c_{p}$ $b_{n}$ $c_{n}$ $b_{p}$ $c_{p}$ $b_{n}$ $c_{n}$
    1 0.0001 1.1635 0.0007 0.7347 0.0069 0.5897 0.0084 0.4720
    5 0.0003 1.5256 0.0012 1.0004 0.0095 0.7328 0.0117 0.6220
    10 0.0006 1.7956 0.0021 1.1641 0.0109 0.8460 0.0136 0.6921
    25 0.0019 2.3483 0.0042 1.5314 0.0138 0.9958 0.0169 0.8474
    50 0.0048 3.4532 0.0068 2.3362 0.0182 1.2260 0.0215 1.1009
    75 0.0067 16.343 0.0095 6.7286 0.0250 1.5685 0.0272 1.4138
    90 0.0092 113.26 0.0129 18.250 0.0347 2.1524 0.0331 1.8616
    95 0.0110 184.27 0.0148 93.635 0.0413 2.6990 0.0370 2.2755
    99 0.0171 312.31 0.0198 123.74 0.0583 5.4866 0.0503 4.6835
     | Show Table
    DownLoad: CSV

    Table 12.  Squared return correlation quantiles.

    Quantile 2019 2020
    1 0.0095 0.0650
    5 0.0341 0.1212
    10 0.0553 0.1593
    25 0.1155 0.2390
    50 0.2095 0.3463
    75 0.2854 0.4370
    90 0.3500 0.5212
    95 0.3766 0.5743
    99 0.4454 0.6511
     | Show Table
    DownLoad: CSV
  • [1] Andersen, T. G., Bollerslev, T., Christoffersen, P. and Diebold, F. X., Practical volatility and correlation modeling for financial market risk management, In: Carey M. and Stulz, R. M. (Eds.), The Risks of Financial Institutions, University of Chicago Press, Chicago, 2007.
    [2]

    Anderson, T. W. and Darling, D. A., Asymptotic theory of certain’ goodness of fit’ criteria based on stochastic processes, The Annals of Mathematical Statistics, 1952, 23: 193-212.doi: 10.1214/aoms/1177729437.

    [3]

    Baillie, R. T., and Chung, H., Estimation of garch models from the autocorrelations of the squares of a process, Journal of Time Series Analysis, 1999, 22: 631-650.

    [4]

    Bodie, Z., On the risk of stocks in the long run, Financial Analysts Journal, 1995, 51: 18-22.

    [5]

    Bollerslev, T. and Mikkelsen, H. O., Modelling and pricing long memory in stock market volatility, Journal of Econometrics, 1996, 73: 151-184.doi: 10.1016/0304-4076(95)01736-4.

    [6]

    Buchmann, B., Madan, D. B. and Lu, K., Weak subordination of multivariate Lévy processes and variance generalized gamma convolutions, Bernoulli, 2019, 25: 742-770.

    [7]

    Carr, P. and Madan, D. B., Joint modeling of VIX and SPX options at a single and common maturity with risk management applications, IIE Transactions, 2014, 46: 1125-1131.doi: 10.1080/0740817X.2013.857063.

    [8]

    Crato, N. and de Lima, P. J. F., Long range dependence in the conditional variance of stock returns, Economics Letters, 1994, 45: 281-285.doi: 10.1016/0165-1765(94)90024-8.

    [9]

    Ding, Z. and Granger, C. W. J., Modeling volatility presistence of speculative markets: A new approach, Journal of Econometrics, 1996, 73: 185-215.doi: 10.1016/0304-4076(95)01737-2.

    [10]

    Ding, Z., Granger, C. W. J. and Engle, R. F., A long memory property of stock returns and a new model, Journal of Empirical Finance, 1993: 83-106.

    [11]

    Fama, E. F. and French, K. R., Long-horizon returns, Review of Asset Pricing Studies, 2018, 8: 232-252.doi: 10.1093/rapstu/ray001.

    [12]

    Feuerverger, A. and McDunnough, P., On the efficiency of empirical characteristic function procedures, Journal of the Royal Statictical Society, Series B, Methodological, 1981, 43: 20-27.

    [13] Jondeau, E., Poon, S.H., and Rockinger, M., Financial modeling under non-gaussian distributions, Springer, Berlin, 2007.
    [14] Khintchine, A. Y., Limit laws of sums of independent random variables, ONTI, Moscow, Russian, 1938.
    [15]

    Küchler, U. and Tappe, S., Bilateral gamma distributions and processes in financial mathematics, Stochastic Processes and Their Applications, 2008, 118: 261-283.doi: 10.1016/j.spa.2007.04.006.

    [16] Lévy, P., Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris, 1937.
    [17]

    Madan, D. B., Estimating parametric models of probability distributions, Methodology and Computing in Applied Probability, 2015, 17: 823-831.doi: 10.1007/s11009-014-9409-4.

    [18]

    Madan D., Carr, P. and Chang, E., The variance gamma process and option pricing, European Finance Review, 1998, 2: 79-105.doi: 10.1023/A:1009703431535.

    [19]

    Madan, D. B. and Schoutens, W., Self-similarity in long horizon returns, Mathematical Finance, 2020, 30: 1368-1391.

    [20] Madan, D. B. and Schoutens, W., Nonlinear Valuation and Non-Gaussian Risks, Cambridge University Press, Cambridge, UK forthcoming.
    [21]

    Madan, D. B., Schoutens, W. and Wang, K., Measuring and monitoring the efficiency of markets, International Journal and Theoretical and Applied Finance, 2017, 20.

    [22] Madan, D. B., Schoutens, W. and Wang, K., Bilateral multiple gamma returns: Their risks and rewards, International Journal of Financial Engineering, 2020, 07(01): 2050008, https://doi.org/10.1142/S2424786320500085.
    [23]

    Madan D. B. and Seneta, E., The variance gamma (VG) model for share market returns, Journal of Business, 1990, 63: 511-524.doi: 10.1086/296519.

    [24]

    Madan, D. B. and Wang, K., Asymmetries in financial returns, International Journal of Financial Engineering, 2017.

    [25]

    Merton, R. C. and Samuelson, P. A., Fallacy of the log-normal approximation to portfolio decision-making over many periods, Journal of Financial Economics, 1974, 1: 67-94.doi: 10.1016/0304-405X(74)90009-9.

    [26] Sato, K., Lévy processes and infinitely divisible distributions, Cambridge Uinversity Press, Cambridge UK, 1999.
    [27] Schoutens, W., Lévy processes in finance, John Wiley and Sons, Hoboken, New Jersey, 2003.
    [28] Shepard, N., Stochastic volatility models, In: Durlauf, S. N. and Blume, L. E. (Eds.), Macro econometrics and Time Series Analysis, The New Palgrave Economics Collection, Palgrave and Macmillan, London, 2010.
    [29]

    Singleton, K. J., Estimation of affine asset pricing models using the empirical characteristic function, Journal of Econometrics, 2001, 102: 111-141.doi: 10.1016/S0304-4076(00)00092-0.

    [30] Taylor, S. J., Modeling financial time series, Wiley, Chichester, 1986.
  • 加载中

Figures(5)

Tables(12)

SHARE

Article Metrics

HTML views(2892) PDF downloads(231) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return