This short note provides a new and simple proof of the convergence rate for the Peng’s law of large numbers under sublinear expectations, which improves the results presented by Song [
Citation: |
[1] |
Chatterji, S., An Lp-convergence theorem, Ann. Mathe. Statis., 1969, 40(3): 1068-1070.doi: 10.1214/aoms/1177697609. |
[2] |
Denis, L., Hu, M. and Peng, S., Function spaces and capacity related to a sublinear expectation: Application to G-Brownian motion paths, Potential Anal., 2011, 34(2): 139-161.doi: 10.1007/s11118-010-9185-x. |
[3] |
Fang, X., Peng, S., Shao, Q. and Song, Y., Limit theorems with rate of convergence under sublinear expectations, Bernoulli, 2019, 25(4A): 2564-2596. |
[4] |
Guo, X. and Li, X., On the laws of large numbers for pseudo-independent random variables under sublinear expectation, Statist. and Probab. Lett., 2021, 172: 109042.doi: 10.1016/j.spl.2021.109042. |
[5] |
Hu, M. and Li, X., Independence under the G-expectation framework, J. Theor. Probab., 2014, 27: 1011-1020.doi: 10.1007/s10959-012-0471-y. |
[6] |
Hu, M. and Peng, S., On representation theorem of G-expectations and paths of G-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 2009, 25: 539-546.doi: 10.1007/s10255-008-8831-1. |
[7] |
Hu, M. and Peng, S., G-Lévy processes under sublinear expectations, Probab. Uncertain. Quant. Risk, 2021, 6(1): 1-22.doi: 10.3934/puqr.2021001. |
[8] |
Li, X., Sublinear expectations and its applications in game theory, PhD thesis, China: Shandong University, 2013.
![]() |
[9] |
Li, X. and Zong, G., On the necessary and sufficient conditions for Peng’s law of large numbers under sublinear expectations, arXiv: 2106.00902v1, 2021.
![]() |
[10] |
Peng, S., G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: Stochastic analysis and applications, Abel Symp., Springer-Verlag Berlin Heidelberg, 2007, 2: 541-567.
![]() |
[11] |
Peng, S., Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process. Appl., 2008, 118(12): 2223-2253.doi: 10.1016/j.spa.2007.10.015. |
[12] |
Peng, S., Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Science in China Series A—Mathematics, 2009, 52(7): 1391-1411.doi: 10.1007/s11425-009-0121-8. |
[13] |
Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer, 2019.
![]() |
[14] |
Peng, S., Law of large numbers and central limit theorem under nonlinear expectations, Probab. Uncertain. Quant. Risk, 2019, 4: 1-8.doi: 10.1186/s41546-018-0035-x. |
[15] |
Song, Y., Stein’s method for law of large numbers under sublinear expectations, arXiv: 1904.04674v1, 2019.
![]() |
[16] |
Walley, P., Statistical Reasoning with Imprecise Probabilities, Chapman & Hall, 1991.
![]() |