doi: 10.3934/puqr.2021014
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Conditional coherent risk measures and regime-switching conic pricing

1. 

UniSA Business, University of South Australia, SA 5000 Adelaide, Australia

2. 

Haskayne School of Business, University of Calgary, Calgary, Alberta, T2N 1N4, Canada

Robert J Elliott E-mail: relliott@ucalgary.ca

Received  December 13, 2020 Accepted  October 13, 2021

Fund Project: The authors would like to thank the Australian Research Council and NSERC for continuing support. The authors are also grateful to the referees for carefully reviewing the manuscript and providing valuable feedback.

This paper introduces and represents conditional coherent risk measures as essential suprema of conditional expectations over a convex set of probability measures and as distorted expectations given a concave distortion function. A model is then developed for the bid and ask prices of a European-type asset by a conic formulation. The price process is governed by a modified geometric Brownian motion whose drift and diffusion coefficients depend on a Markov chain. The bid and ask prices of a European-type asset are then characterized using conic quantization.

Citation: Engel John C Dela Vega, Robert J Elliott. Conditional coherent risk measures and regime-switching conic pricing. Probability, Uncertainty and Quantitative Risk, doi: 10.3934/puqr.2021014
References:
[1]

Artzner, P., Delbaen, F., Eber, J. M. and Heath, D., Coherent measures of risk, Mathematical Finance, 1999, 9(3): 203−228. doi: 10.1111/1467-9965.00068.  Google Scholar

[2]

Artzner, P., Delbaen, F., Eber, J. M., Heath, D. and Ku, H., Coherent multiperiod risk adjusted values and Bellman’s principle, Annals of Operations Research, 2007, 152(1): 5−22. doi: 10.1007/s10479-006-0132-6.  Google Scholar

[3]

Cheridito, P., Delbaen, F. and Kupper, M., Coherent and convex monetary risk measures for bounded càdlàg processes, Stochastic Processes and their Applications, 2004, 112(1): 1−22. doi: 10.1016/j.spa.2004.01.009.  Google Scholar

[4]

Cheridito, P., Delbaen, F. and Kupper, M., Coherent and convex monetary risk measures for unbounded càdlàg processes, Finance and Stochastics, 2006, 10(3): 427−448. doi: 10.1007/s00780-004-0150-7.  Google Scholar

[5]

Cheridito, P., Delbaen, F. and Kupper, M., Dynamic monetary risk measures for bounded discrete-time processes, Electronic Journal of Probability, 2006, 11(3): 57−106. Google Scholar

[6]

Cherny, A. and Madan, D. B., New measure for performance evaluation, The Review of Financial Studies, 2009, 22(7): 2571−2606. doi: 10.1093/rfs/hhn081.  Google Scholar

[7]

Delbaen, F., Coherent risk measures on general probability spaces, In: Sandmann K, Schönbucher PJ (ed.), Advances in Finance and Stochastics, Springer, 2002. Google Scholar

[8]

Detlefsen, K. and Scandolo, G., Conditional and dynamic convex risk measures, Finance and Stochastics, 2005, 9(4): 539−561. doi: 10.1007/s00780-005-0159-6.  Google Scholar

[9]

Dufour, F. and Elliott, R. J., Filtering with discrete state observations, Applied Mathematics and Optimization, 1999, 40(2): 259−272. doi: 10.1007/s002459900125.  Google Scholar

[10]

Dunford, N. and Schwartz, J. T., Linear Operators Part I: General Theory, Interscience Publishers, New York, 1958. Google Scholar

[11]

Elliott, R. J., Aggoun, L. and Moore, J. B., Hidden Markov Models: Estimation and Control, 1st edn., Springer, 1995. Google Scholar

[12]

Elliott, R. J., Chan, L. and Siu, T. K., Option pricing and Esscher transform under regime switching, Annals of Finance, 2005, 1(14): 423−432. Google Scholar

[13]

Epstein, L. G. and Schneider, M., Recursive multiple-priors, Journal of Economic Theory, 2003, 113(1): 1−31. Google Scholar

[14]

Fiorin, L. and Schoutens, W., Conic quantization: stochastic volatility and market implied liquidity, Quantitative Finance, 2020, 20(4): 531−542. doi: 10.1080/14697688.2019.1687928.  Google Scholar

[15]

Föllmer, H. and Schied, A., Convex measures of risk and trading constraints, Finance and Stochastics, 2002, 6(4): 429−447. doi: 10.1007/s007800200072.  Google Scholar

[16]

Föllmer, H. and Schied, A., Robust prefernces and convex measures of risk, In: Sandmann K, Schönbucher PJ (ed.) Advances in Finance and Stochastics, Springer, Berlin, Heidenberg, 2002. Google Scholar

[17]

Föllmer, H. and Schied, A., Stochastic Finance: An Introduction in Discrete Time, 4th edn., De Gruyter, 2016. Google Scholar

[18]

Graf, S. and Luschgy, H., Foundations of Quantization for Probability Distributions, Springer, New York, 2000. Google Scholar

[19]

Inoue, A., On the worst conditional expectation, Journal of Mathematical Analysis and Applications, 2003, 286(1): 237−247. doi: 10.1016/S0022-247X(03)00477-3.  Google Scholar

[20]

Kopycka, D., Dynamic risk measures, Robust representation and examples, Master’s thesis, The Netherlands: VU University Amsterdam and Poland: Jagiellonian University, 2009. Google Scholar

[21]

Kusuoka, S., On law invariant coherent risk measures, In: Kusuoka S., Maruyama T. (ed.), Advances in Mathematical Economics, Springer, 2001. Google Scholar

[22]

Madan, D. B. and Cherny, A., Markets as a counterparty: An introduction to conic finance, International Journal of Theoretical and Applied Finance, 2010, 13(8): 1149−1177. doi: 10.1142/S0219024910006157.  Google Scholar

[23]

Madan, D. B. and Schoutens, W., Applied Conic Finance, 1st edn., Cambridge University Press, 2020. Google Scholar

[24]

Madan, D. B., Pistorius, M. and Stadje, M., On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation, Finance and Stochastics, 2017, 21(4): 1073−1102. doi: 10.1007/s00780-017-0339-1.  Google Scholar

show all references

References:
[1]

Artzner, P., Delbaen, F., Eber, J. M. and Heath, D., Coherent measures of risk, Mathematical Finance, 1999, 9(3): 203−228. doi: 10.1111/1467-9965.00068.  Google Scholar

[2]

Artzner, P., Delbaen, F., Eber, J. M., Heath, D. and Ku, H., Coherent multiperiod risk adjusted values and Bellman’s principle, Annals of Operations Research, 2007, 152(1): 5−22. doi: 10.1007/s10479-006-0132-6.  Google Scholar

[3]

Cheridito, P., Delbaen, F. and Kupper, M., Coherent and convex monetary risk measures for bounded càdlàg processes, Stochastic Processes and their Applications, 2004, 112(1): 1−22. doi: 10.1016/j.spa.2004.01.009.  Google Scholar

[4]

Cheridito, P., Delbaen, F. and Kupper, M., Coherent and convex monetary risk measures for unbounded càdlàg processes, Finance and Stochastics, 2006, 10(3): 427−448. doi: 10.1007/s00780-004-0150-7.  Google Scholar

[5]

Cheridito, P., Delbaen, F. and Kupper, M., Dynamic monetary risk measures for bounded discrete-time processes, Electronic Journal of Probability, 2006, 11(3): 57−106. Google Scholar

[6]

Cherny, A. and Madan, D. B., New measure for performance evaluation, The Review of Financial Studies, 2009, 22(7): 2571−2606. doi: 10.1093/rfs/hhn081.  Google Scholar

[7]

Delbaen, F., Coherent risk measures on general probability spaces, In: Sandmann K, Schönbucher PJ (ed.), Advances in Finance and Stochastics, Springer, 2002. Google Scholar

[8]

Detlefsen, K. and Scandolo, G., Conditional and dynamic convex risk measures, Finance and Stochastics, 2005, 9(4): 539−561. doi: 10.1007/s00780-005-0159-6.  Google Scholar

[9]

Dufour, F. and Elliott, R. J., Filtering with discrete state observations, Applied Mathematics and Optimization, 1999, 40(2): 259−272. doi: 10.1007/s002459900125.  Google Scholar

[10]

Dunford, N. and Schwartz, J. T., Linear Operators Part I: General Theory, Interscience Publishers, New York, 1958. Google Scholar

[11]

Elliott, R. J., Aggoun, L. and Moore, J. B., Hidden Markov Models: Estimation and Control, 1st edn., Springer, 1995. Google Scholar

[12]

Elliott, R. J., Chan, L. and Siu, T. K., Option pricing and Esscher transform under regime switching, Annals of Finance, 2005, 1(14): 423−432. Google Scholar

[13]

Epstein, L. G. and Schneider, M., Recursive multiple-priors, Journal of Economic Theory, 2003, 113(1): 1−31. Google Scholar

[14]

Fiorin, L. and Schoutens, W., Conic quantization: stochastic volatility and market implied liquidity, Quantitative Finance, 2020, 20(4): 531−542. doi: 10.1080/14697688.2019.1687928.  Google Scholar

[15]

Föllmer, H. and Schied, A., Convex measures of risk and trading constraints, Finance and Stochastics, 2002, 6(4): 429−447. doi: 10.1007/s007800200072.  Google Scholar

[16]

Föllmer, H. and Schied, A., Robust prefernces and convex measures of risk, In: Sandmann K, Schönbucher PJ (ed.) Advances in Finance and Stochastics, Springer, Berlin, Heidenberg, 2002. Google Scholar

[17]

Föllmer, H. and Schied, A., Stochastic Finance: An Introduction in Discrete Time, 4th edn., De Gruyter, 2016. Google Scholar

[18]

Graf, S. and Luschgy, H., Foundations of Quantization for Probability Distributions, Springer, New York, 2000. Google Scholar

[19]

Inoue, A., On the worst conditional expectation, Journal of Mathematical Analysis and Applications, 2003, 286(1): 237−247. doi: 10.1016/S0022-247X(03)00477-3.  Google Scholar

[20]

Kopycka, D., Dynamic risk measures, Robust representation and examples, Master’s thesis, The Netherlands: VU University Amsterdam and Poland: Jagiellonian University, 2009. Google Scholar

[21]

Kusuoka, S., On law invariant coherent risk measures, In: Kusuoka S., Maruyama T. (ed.), Advances in Mathematical Economics, Springer, 2001. Google Scholar

[22]

Madan, D. B. and Cherny, A., Markets as a counterparty: An introduction to conic finance, International Journal of Theoretical and Applied Finance, 2010, 13(8): 1149−1177. doi: 10.1142/S0219024910006157.  Google Scholar

[23]

Madan, D. B. and Schoutens, W., Applied Conic Finance, 1st edn., Cambridge University Press, 2020. Google Scholar

[24]

Madan, D. B., Pistorius, M. and Stadje, M., On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation, Finance and Stochastics, 2017, 21(4): 1073−1102. doi: 10.1007/s00780-017-0339-1.  Google Scholar

[1]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1965-1993. doi: 10.3934/jimo.2018132

[2]

Gurkan Ozturk, Mehmet Tahir Ciftci. Clustering based polyhedral conic functions algorithm in classification. Journal of Industrial & Management Optimization, 2015, 11 (3) : 921-932. doi: 10.3934/jimo.2015.11.921

[3]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[4]

Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100

[5]

Müge Acar, Refail Kasimbeyli. A polyhedral conic functions based classification method for noisy data. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3493-3508. doi: 10.3934/jimo.2020129

[6]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[7]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[8]

Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control & Related Fields, 2020, 10 (1) : 189-215. doi: 10.3934/mcrf.2019036

[9]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control & Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[10]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[11]

Wensheng Yin, Jinde Cao, Yong Ren. Inverse optimal control of regime-switching jump diffusions. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021034

[12]

Leunglung Chan, Song-Ping Zhu. An exact and explicit formula for pricing lookback options with regime switching. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021203

[13]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[14]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[15]

Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568

[16]

Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control & Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21

[17]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial & Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[18]

Yinghui Dong, Kam Chuen Yuen, Guojing Wang. Pricing credit derivatives under a correlated regime-switching hazard processes model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1395-1415. doi: 10.3934/jimo.2016079

[19]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072

[20]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control & Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

 Impact Factor: 

Metrics

  • PDF downloads (29)
  • HTML views (32)
  • Cited by (0)

Other articles
by authors

[Back to Top]