In this paper, we extend the definition of conditional $ G{\text{-}}{\rm{expectation}} $ to a larger space on which the dynamical consistency still holds. We can consistently define, by taking the limit, the conditional $ G{\text{-}}{\rm{expectation}} $ for each random variable $ X $, which is the downward limit (respectively, upward limit) of a monotone sequence $ \{X_{i}\} $ in $ L_{G}^{1}(\Omega) $. To accomplish this procedure, some careful analysis is needed. Moreover, we present a suitable definition of stopping times and obtain the optional stopping theorem. We also provide some basic and interesting properties for the extended conditional $ G{\text{-}}{\rm{expectation}} $.
Citation: |
[1] |
Denis, L., Hu, M. and Peng S., Function spaces and capacity related to a sublinear expectation: Application to G-Brownian motion paths, Potential Anal., 2011, 34: 139−161. doi: 10.1007/s11118-010-9185-x.![]() ![]() |
[2] |
Hu, M., Ji, X. and Liu, G., On the strong Markov property for stochastic differential equations driven by G-Brownian motion, Stochastic Process. Appl., 2021, 131: 417−453. doi: 10.1016/j.spa.2020.09.015.![]() ![]() |
[3] |
Hu, M., Ji, S., Peng, S. and Song, Y., Backward stochastic differential equations driven by G-Brownian motion, Stochastic Process. Appl., 2014, 124(1): 759−784. doi: 10.1016/j.spa.2013.09.010.![]() ![]() |
[4] |
Hu, M., Ji, S., Peng, S. and Song, Y., Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion, Stochastic Process. Appl., 2014, 124(2): 1170−1195. doi: 10.1016/j.spa.2013.10.009.![]() ![]() |
[5] |
Hu, M. and Peng, S., On representation theorem of G-expectations and paths of G-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 2009, 25(3): 539−546. doi: 10.1007/s10255-008-8831-1.![]() ![]() |
[6] |
Hu, M. and Peng, S., G-Lévy processes under sublinear expectations, Probab. Uncertain. Quant. Risk, 2021, 6(1): 1–22.
![]() |
[7] |
Li, X. and Peng, S., Stopping times and related Itô’s calculus with G-Brownian motion, Stochastic Process. Appl., 2011, 121(7): 1492−1508. doi: 10.1016/j.spa.2011.03.009.![]() ![]() |
[8] |
Liu, G., Exit times for semimartingales under nonlinear expectation, Stochastic Process. Appl., 2020, 130(12): 7338−7362. doi: 10.1016/j.spa.2020.07.017.![]() ![]() |
[9] |
Nutz, M. and Van Handel, R., Constructing sublinear expectations on path space, Stochastic Process. Appl., 2013, 123(8): 3100−3121. doi: 10.1016/j.spa.2013.03.022.![]() ![]() |
[10] |
Nutz, M. and Zhang, J., Optimal stopping under adverse nonlinear expectation and related games, Ann. Appl. Probab., 2015, 25(5): 2503−2534. ![]() |
[11] |
Peng, S., G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: Benth, F. E., Di Nunno, G., Lindstrøm, T., Øksendal, B. and Zhang, T. (eds.), Stochastic Analysis and Applications, Abel Symp., Springer, Berlin, 2007, 2: 541–567.
![]() |
[12] |
Peng, S., Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process. Appl., 2008, 118(12): 2223−2253. doi: 10.1016/j.spa.2007.10.015.![]() ![]() |
[13] |
Peng, S., A new central limit theorem under sublinear expectations, arXiv: 0803.2656v1, 2008.
![]() |
[14] |
Peng, S., Law of large numbers and central limit theorem under nonlinear expectations, Probab. Uncertain. Quant. Risk, 2019, 4: 4, doi: 10.1186/s41546-019-0038-2.
![]() |
[15] |
Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty, Springer-Verlag, Heidelberg, 2019.
![]() |
[16] |
Soner, M., Touzi, N. and Zhang, J., Martingale representation theorem under G-expectation, Stochastic Process. Appl., 2011, 121(2): 265−287. doi: 10.1016/j.spa.2010.10.006.![]() ![]() |
[17] |
Song, Y., Some properties on G-evaluation and its applications to G-martingale decomposition, Sci. China Math., 2011, 54(2): 287−300. doi: 10.1007/s11425-010-4162-9.![]() ![]() |
[18] |
Song, Y., Properties of hitting times for G-martingales and their applications, Stochastic Process. Appl., 2011, 121(8): 1770−1784. doi: 10.1016/j.spa.2011.04.007.![]() ![]() |