
-
Previous Article
Lower and upper pricing of financial assets
- PUQR Home
- This Issue
-
Next Article
Quantitative stability and numerical analysis of Markovian quadratic BSDEs with reflection
Threshold reweighted Nadaraya–Watson estimation of jump-diffusion models
1. | Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan 250100, Shandong, China |
2. | Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam 999077, Hong Kong, China |
3. | School of Finance and Business, Shanghai Normal University, Shanghai 200234, China |
In this paper, we propose a new method to estimate the diffusion function in the jump-diffusion model. First, a threshold reweighted Nadaraya–Watson-type estimator is introduced. Then, we establish asymptotic normality for the estimator and conduct Monte Carlo simulations through two examples to verify the better finite-sampling properties. Finally, our estimator is demonstrated through the actual data of the Shanghai Interbank Offered Rate in China.
References:
[1] |
Aït-Sahalia, Y. and Jacod, J., High-Frequency Financial Economet rics, Princeton University Press, 2014. |
[2] |
Bandi, F. M. and Nguyen, T. H., On the functional estimation of jump-diffusion models, J. Econometrics, 2003, 116(1/2): 293−328. |
[3] |
Bandi, F. M. and Phillips, P. C. B., Fully nonparametric estimation of scalar diffusion models, Econometrica, 2003, 71(1): 241−283.
doi: 10.1111/1468-0262.00395. |
[4] |
Barndorff-Nielsen, O. E. and Shephard, N., Econometrics of testing for jumps in financial economics using bipower variation, J. Financial Econometrics, 2006, 4(1): 1−30. |
[5] |
Fan, J., Fan, Y. and Jiang, J., Dynamic integration of time- and state-domain methods for volatility estimation, Journal of American Statistical Association, 2007, 102(478): 618−631.
doi: 10.1198/016214507000000176. |
[6] |
Florens-Zmirou, D., On estimating the diffusion coefficient from discrete observations, J. Appl. Probab., 1993, 30(4): 790−804.
doi: 10.2307/3214513. |
[7] |
Hanif, M., Wang, H. and Lin, Z., Reweighted Nadaraya-Watson estimation of jump-diffusion models, Science China Mathematics, 2012, 55(5): 1005−1016.
doi: 10.1007/s11425-011-4340-4. |
[8] |
Jacod, J., Statistics and high-frequency data, Statistical Methods for Stochastic Differential Equations, 2012, 191–310, MR2976984. |
[9] |
Jacod, J. and Shiryaev, A., Limit Theorems for Stochastic Processes, Grundlehren der Mathematischen Wissenschaften Springer, 2003. |
[10] |
Jiang, G. and Knight, J., A nonparametric approach to the estimation of diffusion processes, with an application to a short-term interest rate model, Econometric Theory, 1997, 13(5): 615−645. |
[11] |
Lin, Z. and Wang, H., Empirical likelihood inference for diffusion processes with jumps, Science China Mathematics, 2010, 53(7): 1805−1816.
doi: 10.1007/s11425-010-4027-2. |
[12] |
Mancini, C., Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps, Scand. J. Stat., 2009, 36(2): 270−296.
doi: 10.1111/j.1467-9469.2008.00622.x. |
[13] |
Mancini, C. and Renò, R., Threshold estimation of Markov models with jumps and interest rate modeling, J. Econometrics, 2011, 160(1): 77−92.
doi: 10.1016/j.jeconom.2010.03.019. |
[14] |
Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, Springer, 1999. |
[15] |
Rogers, L. and Williams, D., Diffusions, Markov Processes and Martingales, Volume 2: Itô Calculus, Cambridge University Press, 2000. |
[16] |
Situ, R., Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering, Springer Science & Business Media, 2005. |
[17] |
Song, Y. and Wang, H., Central limit theorems of local polynomial threshold estimator for diffusion processes with jumps, Scand. J. Stat., 2018, 45(3): 644−681.
doi: 10.1111/sjos.12318. |
[18] |
Xu, K. L., Empirical likelihood based inference for nonparametric recurrent diffusions, J. Econometrics., 2009, 153(1): 65−82.
doi: 10.1016/j.jeconom.2009.04.006. |
[19] |
Xu, K. L., Re-weighted functional estimation of diffusion models, Econometric Theory, 2010, 26(2): 541−563.
doi: 10.1017/S0266466609100087. |
show all references
References:
[1] |
Aït-Sahalia, Y. and Jacod, J., High-Frequency Financial Economet rics, Princeton University Press, 2014. |
[2] |
Bandi, F. M. and Nguyen, T. H., On the functional estimation of jump-diffusion models, J. Econometrics, 2003, 116(1/2): 293−328. |
[3] |
Bandi, F. M. and Phillips, P. C. B., Fully nonparametric estimation of scalar diffusion models, Econometrica, 2003, 71(1): 241−283.
doi: 10.1111/1468-0262.00395. |
[4] |
Barndorff-Nielsen, O. E. and Shephard, N., Econometrics of testing for jumps in financial economics using bipower variation, J. Financial Econometrics, 2006, 4(1): 1−30. |
[5] |
Fan, J., Fan, Y. and Jiang, J., Dynamic integration of time- and state-domain methods for volatility estimation, Journal of American Statistical Association, 2007, 102(478): 618−631.
doi: 10.1198/016214507000000176. |
[6] |
Florens-Zmirou, D., On estimating the diffusion coefficient from discrete observations, J. Appl. Probab., 1993, 30(4): 790−804.
doi: 10.2307/3214513. |
[7] |
Hanif, M., Wang, H. and Lin, Z., Reweighted Nadaraya-Watson estimation of jump-diffusion models, Science China Mathematics, 2012, 55(5): 1005−1016.
doi: 10.1007/s11425-011-4340-4. |
[8] |
Jacod, J., Statistics and high-frequency data, Statistical Methods for Stochastic Differential Equations, 2012, 191–310, MR2976984. |
[9] |
Jacod, J. and Shiryaev, A., Limit Theorems for Stochastic Processes, Grundlehren der Mathematischen Wissenschaften Springer, 2003. |
[10] |
Jiang, G. and Knight, J., A nonparametric approach to the estimation of diffusion processes, with an application to a short-term interest rate model, Econometric Theory, 1997, 13(5): 615−645. |
[11] |
Lin, Z. and Wang, H., Empirical likelihood inference for diffusion processes with jumps, Science China Mathematics, 2010, 53(7): 1805−1816.
doi: 10.1007/s11425-010-4027-2. |
[12] |
Mancini, C., Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps, Scand. J. Stat., 2009, 36(2): 270−296.
doi: 10.1111/j.1467-9469.2008.00622.x. |
[13] |
Mancini, C. and Renò, R., Threshold estimation of Markov models with jumps and interest rate modeling, J. Econometrics, 2011, 160(1): 77−92.
doi: 10.1016/j.jeconom.2010.03.019. |
[14] |
Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, Springer, 1999. |
[15] |
Rogers, L. and Williams, D., Diffusions, Markov Processes and Martingales, Volume 2: Itô Calculus, Cambridge University Press, 2000. |
[16] |
Situ, R., Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering, Springer Science & Business Media, 2005. |
[17] |
Song, Y. and Wang, H., Central limit theorems of local polynomial threshold estimator for diffusion processes with jumps, Scand. J. Stat., 2018, 45(3): 644−681.
doi: 10.1111/sjos.12318. |
[18] |
Xu, K. L., Empirical likelihood based inference for nonparametric recurrent diffusions, J. Econometrics., 2009, 153(1): 65−82.
doi: 10.1016/j.jeconom.2009.04.006. |
[19] |
Xu, K. L., Re-weighted functional estimation of diffusion models, Econometric Theory, 2010, 26(2): 541−563.
doi: 10.1017/S0266466609100087. |





Measures | Estimators |
|
|
|
|
|
MSE | NW | 1.32E-08 | 6.91E-09 | 5.20E-08 |
RNW | 6.50E-09 | 6.40E-09 | 5.11E-08 | ||
RMSE | NW | 1.15E-04 | 8.31E-05 | 2.28E-04 | |
RNW | 8.06E-05 | 8.00E-05 | 2.26E-04 | ||
MADE | NW | 8.98E-05 | 7.91E-05 | 2.20E-04 | |
RNW | 7.13E-05 | 7.51E-05 | 2.17E-04 | ||
|
MSE | NW | 2.02E-09 | 1.19E-09 | 1.15E-08 |
RNW | 1.54E-09 | 9.32E-10 | 1.11E-08 | ||
RMSE | NW | 4.50E-05 | 3.44E-05 | 1.07E-04 | |
RNW | 3.92E-05 | 3.05E-05 | 1.05E-04 | ||
MADE | NW | 3.03E-05 | 2.56E-05 | 1.05E-04 | |
RNW | 3.21E-05 | 2.18E-05 | 1.03E-04 | ||
|
MSE | NW | 1.35E-09 | 3.84E-09 | 7.23E-09 |
RNW | 1.19E-09 | 3.80E-09 | 7.15E-09 | ||
RMSE | NW | 3.67E-05 | 6.19E-05 | 8.51E-05 | |
RNW | 3.45E-05 | 6.16E-05 | 8.45E-05 | ||
MADE | NW | 3.27E-05 | 5.55E-05 | 8.11E-05 | |
RNW | 2.69E-05 | 5.59E-05 | 8.07E-05 | ||
1 Note: 1.32E-08 denotes 1.32×10−8 |
Measures | Estimators |
|
|
|
|
|
MSE | NW | 1.32E-08 | 6.91E-09 | 5.20E-08 |
RNW | 6.50E-09 | 6.40E-09 | 5.11E-08 | ||
RMSE | NW | 1.15E-04 | 8.31E-05 | 2.28E-04 | |
RNW | 8.06E-05 | 8.00E-05 | 2.26E-04 | ||
MADE | NW | 8.98E-05 | 7.91E-05 | 2.20E-04 | |
RNW | 7.13E-05 | 7.51E-05 | 2.17E-04 | ||
|
MSE | NW | 2.02E-09 | 1.19E-09 | 1.15E-08 |
RNW | 1.54E-09 | 9.32E-10 | 1.11E-08 | ||
RMSE | NW | 4.50E-05 | 3.44E-05 | 1.07E-04 | |
RNW | 3.92E-05 | 3.05E-05 | 1.05E-04 | ||
MADE | NW | 3.03E-05 | 2.56E-05 | 1.05E-04 | |
RNW | 3.21E-05 | 2.18E-05 | 1.03E-04 | ||
|
MSE | NW | 1.35E-09 | 3.84E-09 | 7.23E-09 |
RNW | 1.19E-09 | 3.80E-09 | 7.15E-09 | ||
RMSE | NW | 3.67E-05 | 6.19E-05 | 8.51E-05 | |
RNW | 3.45E-05 | 6.16E-05 | 8.45E-05 | ||
MADE | NW | 3.27E-05 | 5.55E-05 | 8.11E-05 | |
RNW | 2.69E-05 | 5.59E-05 | 8.07E-05 | ||
1 Note: 1.32E-08 denotes 1.32×10−8 |
Measures | Estimators |
|
|
|
|
|
MSE | NW | 3.58E-05 | 2.03E-05 | 1.86E-02 |
RNW | 2.31E-05 | 1.73E-05 | 7.69E-03 | ||
RMSE | NW | 5.98E-03 | 4.50E-03 | 1.36E-01 | |
RNW | 4.81E-03 | 4.17E-03 | 8.77E-02 | ||
MADE | NW | 5.79E-03 | 3.77E-03 | 9.82E-02 | |
RNW | 4.70E-03 | 3.57E-03 | 6.06E-02 | ||
|
MSE | NW | 6.62E-06 | 6.75E-05 | 8.89E-04 |
RNW | 5.21E-06 | 2.82E-05 | 6.86E-04 | ||
RMSE | NW | 2.57E-03 | 8.22E-03 | 2.98E-02 | |
RNW | 2.28E-03 | 5.31E-03 | 2.62E-02 | ||
MADE | NW | 2.19E-03 | 6.27E-03 | 2.59E-02 | |
RNW | 1.87E-03 | 4.10E-03 | 2.04E-02 | ||
|
MSE | NW | 1.40E-06 | 1.38E-04 | 1.31E-05 |
RNW | 1.10E-06 | 4.57E-05 | 1.81E-06 | ||
RMSE | NW | 1.18E-03 | 1.18E-02 | 3.62E-03 | |
RNW | 1.05E-03 | 6.76E-03 | 1.35E-03 | ||
MADE | NW | 8.52E-04 | 1.02E-02 | 3.01E-03 | |
RNW | 7.56E-04 | 4.34E-03 | 1.11E-03 | ||
1 Note: 3.58E-05 denotes 3.58×10−5. |
Measures | Estimators |
|
|
|
|
|
MSE | NW | 3.58E-05 | 2.03E-05 | 1.86E-02 |
RNW | 2.31E-05 | 1.73E-05 | 7.69E-03 | ||
RMSE | NW | 5.98E-03 | 4.50E-03 | 1.36E-01 | |
RNW | 4.81E-03 | 4.17E-03 | 8.77E-02 | ||
MADE | NW | 5.79E-03 | 3.77E-03 | 9.82E-02 | |
RNW | 4.70E-03 | 3.57E-03 | 6.06E-02 | ||
|
MSE | NW | 6.62E-06 | 6.75E-05 | 8.89E-04 |
RNW | 5.21E-06 | 2.82E-05 | 6.86E-04 | ||
RMSE | NW | 2.57E-03 | 8.22E-03 | 2.98E-02 | |
RNW | 2.28E-03 | 5.31E-03 | 2.62E-02 | ||
MADE | NW | 2.19E-03 | 6.27E-03 | 2.59E-02 | |
RNW | 1.87E-03 | 4.10E-03 | 2.04E-02 | ||
|
MSE | NW | 1.40E-06 | 1.38E-04 | 1.31E-05 |
RNW | 1.10E-06 | 4.57E-05 | 1.81E-06 | ||
RMSE | NW | 1.18E-03 | 1.18E-02 | 3.62E-03 | |
RNW | 1.05E-03 | 6.76E-03 | 1.35E-03 | ||
MADE | NW | 8.52E-04 | 1.02E-02 | 3.01E-03 | |
RNW | 7.56E-04 | 4.34E-03 | 1.11E-03 | ||
1 Note: 3.58E-05 denotes 3.58×10−5. |
Measure |
|
|||||||
|
|
|
||||||
NW | RNW | NW | RNW | NW | RNW | |||
MSE | 0.999917 | 0.999910 | 0.999902 | 0.999900 | 0.999909 | 0.999900 | ||
RMSE | 0.999959 | 0.999955 | 0.999951 | 0.999950 | 0.999954 | 0.999950 | ||
MADE | 0.999959 | 0.999955 | 0.999951 | 0.999950 | 0.999954 | 0.999950 | ||
RADE | 0.999979 | 0.999977 | 0.999976 | 0.999975 | 0.999977 | 0.999975 |
Measure |
|
|||||||
|
|
|
||||||
NW | RNW | NW | RNW | NW | RNW | |||
MSE | 0.999917 | 0.999910 | 0.999902 | 0.999900 | 0.999909 | 0.999900 | ||
RMSE | 0.999959 | 0.999955 | 0.999951 | 0.999950 | 0.999954 | 0.999950 | ||
MADE | 0.999959 | 0.999955 | 0.999951 | 0.999950 | 0.999954 | 0.999950 | ||
RADE | 0.999979 | 0.999977 | 0.999976 | 0.999975 | 0.999977 | 0.999975 |
[1] |
Qing-Qing Yang, Wai-Ki Ching, Wanhua He, Tak-Kuen Siu. Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales. Journal of Industrial and Management Optimization, 2019, 15 (1) : 293-318. doi: 10.3934/jimo.2018044 |
[2] |
Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072 |
[3] |
Chuancun Yin, Kam Chuen Yuen. Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1247-1262. doi: 10.3934/jimo.2015.11.1247 |
[4] |
Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2077-2094. doi: 10.3934/jimo.2021057 |
[5] |
Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177 |
[6] |
Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100 |
[7] |
Xin Zhang, Hui Meng, Jie Xiong, Yang Shen. Robust optimal investment and reinsurance of an insurer under Jump-diffusion models. Mathematical Control and Related Fields, 2019, 9 (1) : 59-76. doi: 10.3934/mcrf.2019003 |
[8] |
Ishak Alia, Mohamed Sofiane Alia. Open-loop equilibrium strategy for mean-variance Portfolio selection with investment constraints in a non-Markovian regime-switching jump-diffusion model. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022048 |
[9] |
Johnathan M. Bardsley. A theoretical framework for the regularization of Poisson likelihood estimation problems. Inverse Problems and Imaging, 2010, 4 (1) : 11-17. doi: 10.3934/ipi.2010.4.11 |
[10] |
Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control and Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21 |
[11] |
Isabelle Kuhwald, Ilya Pavlyukevich. Bistable behaviour of a jump-diffusion driven by a periodic stable-like additive process. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3175-3190. doi: 10.3934/dcdsb.2016092 |
[12] |
Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control and Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025 |
[13] |
Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298 |
[14] |
Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069 |
[15] |
Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 341-366. doi: 10.3934/jimo.2020156 |
[16] |
Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control and Related Fields, 2022, 12 (2) : 371-404. doi: 10.3934/mcrf.2021026 |
[17] |
Sheng Li, Wei Yuan, Peimin Chen. Optimal control on investment and reinsurance strategies with delay and common shock dependence in a jump-diffusion financial market. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022068 |
[18] |
Johnathan M. Bardsley. An efficient computational method for total variation-penalized Poisson likelihood estimation. Inverse Problems and Imaging, 2008, 2 (2) : 167-185. doi: 10.3934/ipi.2008.2.167 |
[19] |
Roberta Sirovich, Laura Sacerdote, Alessandro E. P. Villa. Cooperative behavior in a jump diffusion model for a simple network of spiking neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 385-401. doi: 10.3934/mbe.2014.11.385 |
[20] |
Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]