June  2022, 7(2): 101-118. doi: 10.3934/puqr.2022007

Path independence of the additive functionals for stochastic differential equations driven by G-lévy processes

1. 

School of Mathematics, Southeast University, Nanjing 211189, Jiangsu, China

2. 

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

3. 

Department of Mathematics, Computational Foundry, Swansea University, Bay Campus, Swansea SA1 8EN, UK

hjqiaogean@seu.edu.cn

Received  January 30, 2022 Accepted  May 29, 2022 Published  June 2022 Early access  June 2022

Fund Project: The first author thanks Professor Renming Song for providing her an excellent environment to work in the University of Illinois at Urbana-Champaign. She also thanks Professor Hongjun Gao for valuable discussion. Both authors are grateful to the referees for their constructive suggestions and comments which led to improve the results and the presentation of this paper. This work was partly supported by NSF of China (Grant Nos. 11001051, 11371352, 12071071) and China Scholarship Council (Grant No. 201906095034).

In this study, we are interested in stochastic differential equations driven by G-Lévy processes. We illustrate that a certain class of additive functionals of the equations of interest exhibits the path-independent property, generalizing a few known findings in the literature. The study is ended with many examples.

Citation: Huijie Qiao, Jiang-Lun Wu. Path independence of the additive functionals for stochastic differential equations driven by G-lévy processes. Probability, Uncertainty and Quantitative Risk, 2022, 7 (2) : 101-118. doi: 10.3934/puqr.2022007
References:
[1]

Gao, F., Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion, Stochastic Proc. Appl., 2009, 119(10): 3356−3382. doi: 10.1016/j.spa.2009.05.010.

[2]

Hodges, S. and Carverhill, A., Quasi mean reversion in an efficient stock market: The characterisation of economic equilibria which support Black-Scholes option pricing, Econom. J., 1993, 103(417): 395−405.

[3]

Hu, M. and Peng, S., G-Lévy processes under sublinear expectations, Probab., Uncertain. Quant. Risk, 2021, 6(1): 1–22.

[4]

Li, X. and Peng, S., Stopping times and related Itô’s calculus with G-Brownian motion, Stochastic Proc. Appl., 2011, 121(7): 1492−1508. doi: 10.1016/j.spa.2011.03.009.

[5]

Osuka, E., Girsanov’s formula for G-Brownian motion, Stoch. Process. Appl., 2013, 123(4): 1301−1318. doi: 10.1016/j.spa.2012.12.009.

[6]

Paczka, K., Itô calculus and jump diffusions for G-Lévy processes, arXiv: 1211.2973v3, 2014.

[7]

Paczka, K., G-martingale representation in the G-Lévy setting, arXiv: 1404.2121v1, 2014.

[8]

Peng, S., Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Mathematicae Applicatae Sinica, English Series, 2004, 20(2): 191−214. doi: 10.1007/s10255-004-0161-3.

[9]

Peng, S., Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 2005, 26(2): 159−184. doi: 10.1142/S0252959905000154.

[10]

Peng, S., Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Process. Appl., 2008, 118(12): 2223−2253. doi: 10.1016/j.spa.2007.10.015.

[11]

Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty with Robust CLT and G-Brownian Motion, Probability Theory and Stochastic Modelling, Springer, Berlin, Heidelberg, 2019.

[12]

Qiao, H., Euler-Maruyama approximation for SDEs with jumps and non-Lipschitz coefficients, Osaka J. Math, 2014, 51(7): 47−66.

[13]

Qiao, H., The cocycle property of stochastic differential equations driven by G-Brownian motion, Chinese Annals of Mathematics, Series B, 2015, 36(1): 147−160. doi: 10.1007/s11401-014-0869-1.

[14]

Qiao, H. and Wu, J.-L., Characterising the path-independence of the Girsanov transformation for non-Lipschitz SDEs with jumps, Statistics & Probability Letters, 2016, 119: 326−333.

[15]

Qiao, H. and Wu, J.-L., On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces, Discrete & Continuous Dynamical Systems-B, 2019, 24(4): 1449−1467.

[16]

Qiao, H. and Wu, J.-L., Path independence of the additive functionals for McKean–Vlasov stochastic differential equations with jumps, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2021, 24(1): 2150006. doi: 10.1142/S0219025721500065.

[17]

Ren, P. and Yang, F., Path independence of additive functionals for stochastic differential equations under G-framework, Front. Math. China, 2019, 14(1): 135−148. doi: 10.1007/s11464-019-0752-1.

[18]

Stein, E. M. and Stein, J. C., Stock price distributions with stochastic volatility: An analytic approach, Rev. Financ. Stud., 1991, 4(4): 727−752. doi: 10.1093/rfs/4.4.727.

[19]

Song, Y., Uniqueness of the representation for G-martingales with finite variation, Electron. J. Probab., 2012, 17: 1−15.

[20]

Truman, A., Wang, F.-Y., Wu, J.-L., and Yang, W., A link of stochastic differential equations to nonlinear parabolic equations, Science China Mathematics, 2012, 55(10): 1971−1976. doi: 10.1007/s11425-012-4463-2.

[21]

Wang, B. and Gao, H., Exponential stability of solutions to stochastic differential equations driven by G-Lévy process, Applied Mathematics & Optimization, 2021, 83(3): 1191−1218.

[22]

Wang, B. and Yuan, M., Existence of solution for stochastic differential equations driven by G-Lévy process with discontinuous coefficients, Advances in Difference Equations, 2017, 2017: 188. doi: 10.1186/s13662-017-1242-y.

[23]

Xu, J., Shang, H. and Zhang, B., A Girsanov type theorem under G-framework, Stoch. Anal. Appl., 2011, 29(3): 386−406. doi: 10.1080/07362994.2011.548985.

show all references

References:
[1]

Gao, F., Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion, Stochastic Proc. Appl., 2009, 119(10): 3356−3382. doi: 10.1016/j.spa.2009.05.010.

[2]

Hodges, S. and Carverhill, A., Quasi mean reversion in an efficient stock market: The characterisation of economic equilibria which support Black-Scholes option pricing, Econom. J., 1993, 103(417): 395−405.

[3]

Hu, M. and Peng, S., G-Lévy processes under sublinear expectations, Probab., Uncertain. Quant. Risk, 2021, 6(1): 1–22.

[4]

Li, X. and Peng, S., Stopping times and related Itô’s calculus with G-Brownian motion, Stochastic Proc. Appl., 2011, 121(7): 1492−1508. doi: 10.1016/j.spa.2011.03.009.

[5]

Osuka, E., Girsanov’s formula for G-Brownian motion, Stoch. Process. Appl., 2013, 123(4): 1301−1318. doi: 10.1016/j.spa.2012.12.009.

[6]

Paczka, K., Itô calculus and jump diffusions for G-Lévy processes, arXiv: 1211.2973v3, 2014.

[7]

Paczka, K., G-martingale representation in the G-Lévy setting, arXiv: 1404.2121v1, 2014.

[8]

Peng, S., Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Mathematicae Applicatae Sinica, English Series, 2004, 20(2): 191−214. doi: 10.1007/s10255-004-0161-3.

[9]

Peng, S., Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 2005, 26(2): 159−184. doi: 10.1142/S0252959905000154.

[10]

Peng, S., Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Process. Appl., 2008, 118(12): 2223−2253. doi: 10.1016/j.spa.2007.10.015.

[11]

Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty with Robust CLT and G-Brownian Motion, Probability Theory and Stochastic Modelling, Springer, Berlin, Heidelberg, 2019.

[12]

Qiao, H., Euler-Maruyama approximation for SDEs with jumps and non-Lipschitz coefficients, Osaka J. Math, 2014, 51(7): 47−66.

[13]

Qiao, H., The cocycle property of stochastic differential equations driven by G-Brownian motion, Chinese Annals of Mathematics, Series B, 2015, 36(1): 147−160. doi: 10.1007/s11401-014-0869-1.

[14]

Qiao, H. and Wu, J.-L., Characterising the path-independence of the Girsanov transformation for non-Lipschitz SDEs with jumps, Statistics & Probability Letters, 2016, 119: 326−333.

[15]

Qiao, H. and Wu, J.-L., On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces, Discrete & Continuous Dynamical Systems-B, 2019, 24(4): 1449−1467.

[16]

Qiao, H. and Wu, J.-L., Path independence of the additive functionals for McKean–Vlasov stochastic differential equations with jumps, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2021, 24(1): 2150006. doi: 10.1142/S0219025721500065.

[17]

Ren, P. and Yang, F., Path independence of additive functionals for stochastic differential equations under G-framework, Front. Math. China, 2019, 14(1): 135−148. doi: 10.1007/s11464-019-0752-1.

[18]

Stein, E. M. and Stein, J. C., Stock price distributions with stochastic volatility: An analytic approach, Rev. Financ. Stud., 1991, 4(4): 727−752. doi: 10.1093/rfs/4.4.727.

[19]

Song, Y., Uniqueness of the representation for G-martingales with finite variation, Electron. J. Probab., 2012, 17: 1−15.

[20]

Truman, A., Wang, F.-Y., Wu, J.-L., and Yang, W., A link of stochastic differential equations to nonlinear parabolic equations, Science China Mathematics, 2012, 55(10): 1971−1976. doi: 10.1007/s11425-012-4463-2.

[21]

Wang, B. and Gao, H., Exponential stability of solutions to stochastic differential equations driven by G-Lévy process, Applied Mathematics & Optimization, 2021, 83(3): 1191−1218.

[22]

Wang, B. and Yuan, M., Existence of solution for stochastic differential equations driven by G-Lévy process with discontinuous coefficients, Advances in Difference Equations, 2017, 2017: 188. doi: 10.1186/s13662-017-1242-y.

[23]

Xu, J., Shang, H. and Zhang, B., A Girsanov type theorem under G-framework, Stoch. Anal. Appl., 2011, 29(3): 386−406. doi: 10.1080/07362994.2011.548985.

[1]

Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001

[2]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[3]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[4]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[5]

Tian Zhang, Chuanhou Gao. Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3725-3747. doi: 10.3934/dcdsb.2021204

[6]

Yong Ren, Qi Zhang. Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3811-3829. doi: 10.3934/dcdsb.2021207

[7]

Yanqiang Chang, Huabin Chen. Stability analysis of stochastic delay differential equations with Markovian switching driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 5935-5952. doi: 10.3934/dcdsb.2021301

[8]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[9]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[10]

Yang Yang, Kaiyong Wang, Jiajun Liu, Zhimin Zhang. Asymptotics for a bidimensional risk model with two geometric Lévy price processes. Journal of Industrial and Management Optimization, 2019, 15 (2) : 481-505. doi: 10.3934/jimo.2018053

[11]

Xingchun Wang, Yongjin Wang. Hedging strategies for discretely monitored Asian options under Lévy processes. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1209-1224. doi: 10.3934/jimo.2014.10.1209

[12]

A. Settati, A. Lahrouz, Mohamed El Fatini, A. El Haitami, M. El Jarroudi, M. Erriani. A Markovian switching diffusion for an SIS model incorporating Lévy processes. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022072

[13]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[14]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

[15]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations and Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[16]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[17]

Phuong Nguyen, Roger Temam. The stampacchia maximum principle for stochastic partial differential equations forced by lévy noise. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2289-2331. doi: 10.3934/cpaa.2020100

[18]

Wei Zhong, Yongxia Zhao, Ping Chen. Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2639-2667. doi: 10.3934/jimo.2020087

[19]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial and Management Optimization, 2022, 18 (2) : 795-823. doi: 10.3934/jimo.2020179

[20]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

 Impact Factor: 

Metrics

  • PDF downloads (60)
  • HTML views (53)
  • Cited by (0)

Other articles
by authors

[Back to Top]