In this study, we are interested in stochastic differential equations driven by G-Lévy processes. We illustrate that a certain class of additive functionals of the equations of interest exhibits the path-independent property, generalizing a few known findings in the literature. The study is ended with many examples.
Citation: |
[1] |
Gao, F., Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion, Stochastic Proc. Appl., 2009, 119(10): 3356−3382. doi: 10.1016/j.spa.2009.05.010.![]() ![]() |
[2] |
Hodges, S. and Carverhill, A., Quasi mean reversion in an efficient stock market: The characterisation of economic equilibria which support Black-Scholes option pricing, Econom. J., 1993, 103(417): 395−405. ![]() |
[3] |
Hu, M. and Peng, S., G-Lévy processes under sublinear expectations, Probab., Uncertain. Quant. Risk, 2021, 6(1): 1–22.
![]() |
[4] |
Li, X. and Peng, S., Stopping times and related Itô’s calculus with G-Brownian motion, Stochastic Proc. Appl., 2011, 121(7): 1492−1508. doi: 10.1016/j.spa.2011.03.009.![]() ![]() |
[5] |
Osuka, E., Girsanov’s formula for G-Brownian motion, Stoch. Process. Appl., 2013, 123(4): 1301−1318. doi: 10.1016/j.spa.2012.12.009.![]() ![]() |
[6] |
Paczka, K., Itô calculus and jump diffusions for G-Lévy processes, arXiv: 1211.2973v3, 2014.
![]() |
[7] |
Paczka, K., G-martingale representation in the G-Lévy setting, arXiv: 1404.2121v1, 2014.
![]() |
[8] |
Peng, S., Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Mathematicae Applicatae Sinica, English Series, 2004, 20(2): 191−214. doi: 10.1007/s10255-004-0161-3.![]() ![]() |
[9] |
Peng, S., Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math., 2005, 26(2): 159−184. doi: 10.1142/S0252959905000154.![]() ![]() |
[10] |
Peng, S., Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Process. Appl., 2008, 118(12): 2223−2253. doi: 10.1016/j.spa.2007.10.015.![]() ![]() |
[11] |
Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty with Robust CLT and G-Brownian Motion, Probability Theory and Stochastic Modelling, Springer, Berlin, Heidelberg, 2019.
![]() |
[12] |
Qiao, H., Euler-Maruyama approximation for SDEs with jumps and non-Lipschitz coefficients, Osaka J. Math, 2014, 51(7): 47−66. ![]() |
[13] |
Qiao, H., The cocycle property of stochastic differential equations driven by G-Brownian motion, Chinese Annals of Mathematics, Series B, 2015, 36(1): 147−160. doi: 10.1007/s11401-014-0869-1.![]() ![]() |
[14] |
Qiao, H. and Wu, J.-L., Characterising the path-independence of the Girsanov transformation for non-Lipschitz SDEs with jumps, Statistics & Probability Letters, 2016, 119: 326−333. ![]() |
[15] |
Qiao, H. and Wu, J.-L., On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces, Discrete & Continuous Dynamical Systems-B, 2019, 24(4): 1449−1467. ![]() |
[16] |
Qiao, H. and Wu, J.-L., Path independence of the additive functionals for McKean–Vlasov stochastic differential equations with jumps, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2021, 24(1): 2150006. doi: 10.1142/S0219025721500065.![]() ![]() |
[17] |
Ren, P. and Yang, F., Path independence of additive functionals for stochastic differential equations under G-framework, Front. Math. China, 2019, 14(1): 135−148. doi: 10.1007/s11464-019-0752-1.![]() ![]() |
[18] |
Stein, E. M. and Stein, J. C., Stock price distributions with stochastic volatility: An analytic approach, Rev. Financ. Stud., 1991, 4(4): 727−752. doi: 10.1093/rfs/4.4.727.![]() ![]() |
[19] |
Song, Y., Uniqueness of the representation for G-martingales with finite variation, Electron. J. Probab., 2012, 17: 1−15. ![]() |
[20] |
Truman, A., Wang, F.-Y., Wu, J.-L., and Yang, W., A link of stochastic differential equations to nonlinear parabolic equations, Science China Mathematics, 2012, 55(10): 1971−1976. doi: 10.1007/s11425-012-4463-2.![]() ![]() |
[21] |
Wang, B. and Gao, H., Exponential stability of solutions to stochastic differential equations driven by G-Lévy process, Applied Mathematics & Optimization, 2021, 83(3): 1191−1218. ![]() |
[22] |
Wang, B. and Yuan, M., Existence of solution for stochastic differential equations driven by G-Lévy process with discontinuous coefficients, Advances in Difference Equations, 2017, 2017: 188. doi: 10.1186/s13662-017-1242-y.![]() ![]() |
[23] |
Xu, J., Shang, H. and Zhang, B., A Girsanov type theorem under G-framework, Stoch. Anal. Appl., 2011, 29(3): 386−406. doi: 10.1080/07362994.2011.548985.![]() ![]() |