\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Mean-field BSDEs with jumps and dual representation for global risk measures

  • Corresponding author: Agnès Sulem

    Corresponding author: Agnès Sulem
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We study mean-field BSDEs with jumps and a generalized mean-field operator that can capture higher-order interactions. We interpret the BSDE solution as a dynamic risk measure for a representative bank whose risk attitude is influenced by the system. This influence can come in a wide class of choices, including the average system state or average intensity of system interactions. Using Fenchel−Legendre transforms, our main result is a dual representation for the expectation of the risk measure in the convex case. In particular, we exhibit its dependence on the mean-field operator.

    Mathematics Subject Classification: 60H10, 60H30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1]

    Agram, N., Hu, Y. and Øksendal, B., Mean-field backward stochastic differential equations and applications, Systems & Control Letters, 2022, 162: 105196.

    [2] Amini, H., Cao, Z. and Sulem, A., Graphon mean-field backward stochastic differential equations with jumps and associated dynamic risk measures, SSRN Electronic Journal, 2022, https://dx.doi.org/10.2139/ssrn.4162616.
    [3] Barrieu, P. and El Karoui, N., Optimal derivatives design under dynamic risk measures, In: Yin, G. and Zhang, Q.(eds.), Mathematics of Finance, Contemporary Mathematics, AMS, Providence, Rhode Island, 2004, 351: 13–26.
    [4]

    Bollobás, B., Janson, S. and Riordan, O., The phase transition in inhomogeneous random graphs, Random Structures & Algorithms, 2007, 31(1): 3−122.

    [5]

    Buckdahn, R., Djehiche, B., Li, J. and Peng, S., Mean-field backward stochastic differential equations: A limit approach, The Annals of Probability, 2009, 37(4): 1524−1565.

    [6]

    Carmona, R., Fouque, J.-P. and Sun, L.-H., Mean-field games and systemic risk, Communications in Mathematical Sciences, 2015, 13(4): 911−933.

    doi: 10.4310/CMS.2015.v13.n4.a4.

    [7]

    Chew, S. H., Epstein, L. G. and Segal, U., Mixture symmetry and quadratic utility, Econometrica, 1991, 59(1): 139−163.

    doi: 10.2307/2938244.

    [8] Cohn, D. l., Measure Theory, 2nd ed., Birkhäuser, New York, NY, 2013.
    [9]

    Craig, B. and Von Peter, G., Interbank tiering and money center banks, Journal of Financial Intermediation, 2014, 23(3): 322−347.

    doi: 10.1016/j.jfi.2014.02.003.

    [10]

    Dana, R.-A., A representation result for concave Schur concave functions, Mathematical Finance, 2005, 15(4): 613−634.

    doi: 10.1111/j.1467-9965.2005.00253.x.

    [11] Dellacherie, C. and Meyer, P.-A., Probabilité et Potentiel, Chap. I-IV, Hermann, 1975.
    [12] Ekeland, I. and Témam, R., Convex Analysis and Variational Problems, North Holland, Amsterdam, 1976.
    [13]

    Fouque, J.-P. and Ichiba, T., Stability in a model of interbank lending, SIAM Journal on Financial Mathematics, 2013, 4(1): 784−803.

    doi: 10.1137/110841096.

    [14] Frittelli, M. and Rosazza-Gianin, E., Dynamic convex risk measures, In: Szegö, G.(ed.), Risk Measures for the 21st Century, John Wiley & Sons, Hoboken, NJ, 2004: 227–248.
    [15]

    Garnier, J., Papanicolaou, G. and Yang, T.-W., Large deviations for a mean field model of systemic risk, SIAM Journal on Financial Mathematics, 2013, 4(1): 151−184.

    doi: 10.1137/12087387X.

    [16] Garnier, J., Papanicolaou, G. and Yang, T.-W., Diversification in financial networks may increase systemic risk, In: Fouque, J. and Langsam, J.(eds.), Handbook on Systemic Risk, Cambridge University Press, Cambridge, 2013: 432–443.
    [17] Hu, K., Ren, Z. and Yang, J. J., Principal-agent problem with multiple principals, arXiv: 1904.01413v2, 2019.
    [18]

    Laurière, M. and Tangpi, L., Backward propagation of chaos, Electron. J. Probab., 2022, 27: 1−30.

    doi: 10.48550/arXiv.1911.06835.

    [19]

    Laurière, M. and Tangpi, L., Convergence of large population games to mean field games with interaction through the controls, SIAM Journal on Mathematical Analysis, 2022, 54(3): 3535−3574.

    doi: 10.1137/22M1469328.

    [20]

    Li, J., Mean-field forward and backward SDEs with jumps and associated nonlocal quasi-linear integral-PDEs, Stochastic Processes and their Applications, 2018, 128(9): 3118−3180.

    doi: 10.1016/j.spa.2017.10.011.

    [21]

    Li, J. and Min, H., Controlled mean-field backward stochastic differential equations with jumps involving the value function, Journal of Systems Science and Complexity, 2016, 29(5): 1238−1268.

    doi: 10.1007/s11424-016-4275-5.

    [22] Peng, S., Nonlinear expectations, nonlinear evaluations and risk measures, In: Frittelli, M. and Runggaldier, W. (eds.), Stochastic Methods in Finance, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 2004, 1856: 165–253.
    [23]

    Quenez, M.-C. and Sulem, A., BSDEs with jumps, optimization and applications to dynamic risk measures, Stochastic Processes and their Applications, 2013, 123(8): 3328−3357.

    doi: 10.1016/j.spa.2013.02.016.

    [24]

    Quenez, M.-C. and Sulem, A., Reflected BSDEs and robust optimal stopping for dynamic risk measures with jumps, Stochastic Processes and their Applications, 2014, 124(9): 3031−3054.

    doi: 10.1016/j.spa.2014.04.007.

    [25]

    Tang, S. J. and Li, X. J., Necessary conditions for optimal control of stochastic systems with random jumps, SIAM Journal on Control and Optimization, 1994, 32(5): 1447−1475.

    doi: 10.1137/S0363012992233858.

  • 加载中
SHARE

Article Metrics

HTML views(2849) PDF downloads(391) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return