\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ergodic switching control for diffusion-type processes

  • Corresponding author: Maurice Robin

    Corresponding author: Maurice Robin
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We consider the control of the discrete component $ n_t $ of a switching Markov process $ x_t = ( z_t, n_t) $ when there is a running cost and an immediate cost $ c(i, j) $ for switching $ n_t $ from $ i $ to $ j $. We study the minimization of the ergodic (or long-term average) total cost. Essentially, this paper treats the case where, for $ n_t=n $ fixed, $ z_t $ is a reflected diffusion or a reflected diffusion with jumps, $ n_t $ being, for fixed $ z $, a continuous-time Markov chain. Using the vanishing discount approach, we extend existing results dealing with the situation where $ n_t $ evolves only by the switching control action and the diffusion is non-degenerate. Moreover, we solve the ergodic problem for a class of diffusions which can be degenerate and for an example with absorbing state.

    Mathematics Subject Classification: 49J40, 60J60, 60J75.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] Arapostathis, A., Borkar, V. S. and Ghosh, M. K., Ergodic Control of Diffusion Processes, Cambridge University Press, Cambridge, 2012.
    [2] Bensoussan, A., Perturbation Methods in Optimal Control, Gauthier-Villars, Montrouge, 1988.
    [3] Bensoussan, A. and Lions, J. L., Contrôle Impulsionnel Et Inéquations Quasi Variationnelles, Gauthier Villars, Paris, 1982.
    [4]

    Bensoussan, A. and Lions, P. L., Optimal control of random evolutions, Stochastics, 1981, 5(3): 169−190.

    doi: 10.1080/17442508108833180.

    [5] Davis, M. H. A., Markov Models and Optimization, Chapman & Hall, London, 1993.
    [6] Ethier, S. N. and Kurtz, T. G., Markov Processes: Characterization and Convergence, John Wiley & Sons, New York, 1986.
    [7] Garroni, M. G. and Menaldi, J. L., Second Order Elliptic Integro -Differential Problems, Chapman & Hall/CRC, Boca Raton, FL, 2002.
    [8]

    Gatarek, D. and Stettner, L., On the compactness method in general ergodic impulsive control of Markov processes, Stochastics and Stochastic Reports, 1990, 31(1–4): 15−25.

    [9] Gikhman, I. I. and Skorokhod, A. V., The Theory of Stochastic Processes, Vol. I, II and III, Springer-Verlag, New York, 1974, 1975 and 1979.
    [10] Menaldi, J. L., Stochastic Differential Equations with Jumps, First Version 2008, Current Version 2014, http://menaldi.wayne.edu/details/m-book-06-2013.pdf.
    [11]

    Menaldi, J. L., Perthame, B. and Robin, M., Ergodic problem for optimal stochastic switching, J. Math. Anal. Appl., 1990, 147(2): 512−530.

    doi: 10.1016/0022-247X(90)90367-O.

    [12]

    Menaldi, J. L. and Robin, M., Ergodic control of reflected diffusions with jumps, Appl. Math. Optim., 1997, 35(2): 117−137.

    doi: 10.1007/s002459900040.

    [13]

    Menaldi, J. L. and Robin, M., On some optimal stopping problems with constraint, SIAM J. Control Optim., 2016, 54(5): 2650−2671.

    doi: 10.1137/15M1040001.

    [14]

    Menaldi, J. L. and Robin, M., On some impulse control problems with constraint, SIAM J. Control Optim., 2017, 55(5): 3204−3225.

    doi: 10.1137/16M1090302.

    [15]

    Menaldi, J. L. and Robin, M., On some ergodic impulse control problems with constraint, SIAM J. Control Optim., 2018, 56(4): 2690−2711.

    doi: 10.1137/17M1147573.

    [16] Menaldi, J. L. and Robin, M., On optimal stopping and impulse control with constraint, In: Yin, G. and Zhang, Q.(eds.), Modeling, Stochastic Control, Optimization, and Applications, The IMA Volumes in Mathematics and its Application, Springer, Switzerland, 2019, 164: 427–450.
    [17] Menaldi, J. L. and Robin, M., Ergodic impulse control with constraint, the locally compact case, In: Jakubowski, J., Nieweglowski, M., Rásonyi, M. and Stettner, Ł.(eds), Stochastic Modeling and Control, Banach Center Publications, Warzawa, 2020, 122: 187–206.
    [18]

    Menaldi, J. L. and Robin, M., On ergodic control of switching processes, Communiucation in Information and Systems, 2021, 21(4): 591−621.

    doi: 10.4310/CIS.2021.v21.n4.a4.

    [19]

    Palczewski, J. and Stettner, Ł., Impulse control maximizing average cost per unit time: A nonuniformly ergodic case, SIAM J. Control Optim., 2017, 55(2): 936−960.

    doi: 10.1137/16M1085991.

    [20] Robin, M., Contrôle Impulsionnel Des Processus De Markov, Université Paris Dauphine, Paris IX, HAL Id: tel-00735779, 1978.
    [21]

    Robin, M., On some impulse control problems with long run average cost, SIAM J. Control Optim., 1981, 19(3): 333−358.

    doi: 10.1137/0319020.

    [22]

    Robin, M., Long-term average cost control problems for continuous time Markov processes: A survey, Acta Appl. Math., 1983, 1(3): 281−299.

    doi: 10.1007/BF00046603.

    [23]

    Stettner, L., On the Poisson equation and optimal stopping of ergodic Markov processes, Stochastics, 1986, 18(1): 25−48.

    doi: 10.1080/17442508608833399.

    [24]

    Xi, F. and Zhu, C., On Feller and strong Feller properties and exponential ergodicity of regime-switching jump diffusion processes with countable regimes, SIAM J. Control Optim., 2017, 55(3): 1789−1818.

    doi: 10.1137/16M1087837.

    [25] Yin, G. G. and Zhu, G., Hybrid Switching Diffusions: Properties and Applications, Springer, New York, 2010.
    [26]

    Zabczyk, J., Optimal control by means of switching, Studia Mathematica, 1973, 45(2): 161−171.

    doi: 10.4064/sm-45-2-161-171.

  • 加载中
SHARE

Article Metrics

HTML views(2688) PDF downloads(438) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return