\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

3D shear flows driven by Lévy noise at the boundary

  • Corresponding author: Roger Temam

    Corresponding author: Roger Temam

This work was partially supported by the Research Fund of Indiana University.

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • This paper is concerned with the stochastic incompressible Navier–Stokes equations in a layer of fluid between two flat no-slip boundaries. The fluid is driven by the noisy movement of the bottom boundary, where the noise is given by a Lévy process. After establishing existence of a martingale solution, we use the background flow method to derive an upper bound on the turbulent energy dissipation rate. Our estimate recovers one of the basic scaling ideas of turbulence theory, namely, that the dissipation rate is independent of the viscosity at high Reynolds number.

    Mathematics Subject Classification: 35Q30, 76D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The graph of $ x_3 \mapsto \phi(x_3, \mathbb{X}_{t}(\omega)) $, where $ \delta_t=\delta( \mathbb{X}_{t}(\omega)) $ is the boundary layer thickness

  • [1] Applebaum, D., Lévy Processes and Stochastic Calculus, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge University Press, Cambridge, 2009.
    [2]

    Bensoussan, A. and Temam, R., Equations stochastiques du type Navier-Stokes, J. Funct. Anal., 1973, 13: 195−222.

    doi: 10.1016/0022-1236(73)90045-1.

    [3]

    Busse, F. H., Bounds for turbulent shear flow, Journal of Fluid Mechanics, 1970, 41: 4219−240.

    [4]

    Camassa, R., Kilic, Z. and McLaughlin, R. M., On the symmetry properties of a random passive scalar with and without boundaries, and their connection between hot and cold states, Phys. D, 2019, 400: 132124.

    doi: 10.1016/j.physd.2019.05.004.

    [5]

    Chorin, A. J., Numerical study of slightly visous flow, J. Fluid Mech., 1973, 57: 785−796.

    doi: 10.1017/S0022112073002016.

    [6]

    Cyr, J., Nguyen, P., Tang, S. and Temam, R., Review of local and global existence results for stochastic PDEs with Lévy noise, Discrete Contin. Dyn. Syst., 2020, 40(10): 5639−5710.

    doi: 10.3934/dcds.2020241.

    [7]

    Dascaliuc, R., Foias, C. and Jolly, M. S., On the asymptotic behavior of average energy and enstrophy in 3D turbulent flows, Phys. D, 2009, 238: 725−736.

    doi: 10.1016/j.physd.2009.01.008.

    [8]

    Debussche, A., Glatt-Holtz, N. and Temam, R., Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 2011, 240(14−15): 1123−1144.

    doi: 10.1016/j.physd.2011.03.009.

    [9]

    DeCaria, V., Layton, W., Pakzad, A., Rong, Y., Sahin, N. and Zhao, H., On the determination of the grad-div criterion, Journal of Mathematical Analysis and Applications, 2018, 467: 1032−1037.

    doi: 10.1016/j.jmaa.2018.07.040.

    [10] Doering, C. R. and Constantin, P., Energy dissipation in shear driven turbulence, Physical review letters, 1992, 69: 1648.
    [11]

    Doering, C. R. and Foias, C., Energy dissipation in body-forced turbulence, J. Fluid Mech., 2002, 467: 289−306.

    doi: 10.1017/S0022112002001386.

    [12]

    Duchon, J. and Robert, R., Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations, Nonlinearity, 2000, 13: 249−255.

    doi: 10.1088/0951-7715/13/1/312.

    [13] Fan, W.-T., Jolly, M. and Pakzad, A., Three-dimensional shear driven turbulence with noise at the boundary, Nonlinearity, 2021, 34(7): 4764.
    [14]

    Flandoli, F. and Gatarek, D., Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab, Theory Related Fields, 1995, 102(3): 367−391.

    doi: 10.1007/BF01192467.

    [15]

    Foias, C., Jolly, M. S., Manley, O. P., Rosa, R. and Temam, R., Kolmogorov theory via finite-time averages, Phys. D, 2005, 212(3−4): 245−270.

    doi: 10.1016/j.physd.2005.10.002.

    [16] Frisch, U., Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995.
    [17] Hopf, E., Lecture Series of the Symposium on Partial Differential Equations, University of California, Berkeley, 1955.
    [18]

    Howard, L. N., Bounds on flow quantities, Annual Review of Fluid Mechanics, 1972, 4: 473−494.

    doi: 10.1146/annurev.fl.04.010172.002353.

    [19]

    Hussein, H., Capp, S. and George, W., Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet, Journal of Fluid Mechanics, 1994, 258: 31−75.

    doi: 10.1017/S002211209400323X.

    [20] Kallenberg, O., Foundations of Modern Probability, 2nd ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002.
    [21]

    Kerswell, R. R., Variational bounds on shear-driven turbulence and turbulent Boussinesq convection, Physica D, 1997, 100: 355−376.

    doi: 10.1016/S0167-2789(96)00227-8.

    [22]

    Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Proc. Roy. Soc. London Ser. A, 1991, 1890, 434: 9−13.

    [23]

    Krylov, N. V. and Rozovskii, B. L., Stochastic evolution equations, Current Problems in Mathematics, 1979, 14: 71−147.

    [24]

    Lathrop, D. P., Fineberg, J. and Swinney, H. L., Turbulent flow between concentric rotating cylinders at large Reynolds number, Physical Review Letters, 1992, 68(10): 1515.

    doi: 10.1103/PhysRevLett.68.1515.

    [25]

    Layton, W. J., Energy dissipation bounds for shear flows for a model in large eddy simulation, Math. Comput. Modelling, 2002, 35(13): 1445−1451.

    doi: 10.1016/S0895-7177(02)00095-X.

    [26] Layton, W. J., Introduction to the Numerical Analysis of Incompressible Viscous Flows, Computational Science & Engineering, vol. 6, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008, With a foreword by Max Gunzburger.
    [27]

    Layton, W. J., Energy dissipation in the Smagorinsky model of turbulence, Appl. Math. Lett., 2016, 59: 56−59.

    doi: 10.1016/j.aml.2016.03.008.

    [28]

    Marchioro, C., Remark on the energy dissipation in shear driven turbulence, Phys. D, 1994, 74(3-4): 395−398.

    doi: 10.1016/0167-2789(94)90203-8.

    [29] Métivier, M., Semimartingales: A course on stochastic processes, de Gruyter Studies in Mathematics, Vol. 2, Walter de Gruyter & Co., Berlin-New York, 1982.
    [30]

    Nguyen, P. and Tawri, K. and Temam, R., Nonlinear stochastic parabolic partial differential equations with a monotone operator of the Ladyzenskaya-Smagorinsky type, driven by a Lévy noise, J. Funct. Anal., 2021, 281(8): 109157.

    doi: 10.1016/j.jfa.2021.109157.

    [31]

    Pakzad, A., Damping functions correct over-dissipation of the Smagorinsky Model, Mathematical Methods in the Applied Sciences, 2017, 40(16): 5933−5945.

    doi: 10.1002/mma.4444.

    [32]

    Pakzad, A., Analysis of mesh effects on turbulence statistics, Journal of Mathematical Analysis and Applications, 2019, 475: 839−860.

    doi: 10.1016/j.jmaa.2019.02.075.

    [33]

    Pakzad, A., On the long time behavior of time relaxation model of fluids, Phys. D, 2020, 408: 132509.

    doi: 10.1016/j.physd.2020.132509.

    [34] Pope, S. B., Turbulent Flows, Cambridge University Press, Cambridge, 2000.
    [35] Reichardt, H., Gesetzmassigkeiten der geradlinigen turbulenten Couettestromung, MaxPlanck-Institut fur Stromungsforschung und Aerodynamische versuchsanstalt, 1959, No. 22, 1−45
    [36] Saffman, P. G., Lectures on Homogeneous Turbulence, In: Zabusky, N. (ed.), Topics in Nonlinear Physics, Springer-Verlag, New York, 1968, 485−614.
    [37]

    Sreenivasan, K. R., An update on the energy dissipation rate in isotropic turbulence, Phys. Fluids, 1998, 10(2): 528−529.

    doi: 10.1063/1.869575.

    [38]

    Taylor, G. I., Statistical theory of turbulence, Proc. R. Soc. Lond A, 1935, 151(873): 421−444.

    doi: 10.1098/rspa.1935.0158.

    [39] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001.
    [40] Viot, M., Solutions faibles d’équations aux dérivées partielles stochastiques non linéaires, Thèse, Université Pierre et Marie Curie, 1976.
    [41]

    Wang, X., Time-averaged energy dissipation rate for shear driven flows in R n , Phys. D, 1997, 99(4): 555−563.

    doi: 10.1016/S0167-2789(96)00161-3.

  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(2140) PDF downloads(323) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return