Certain Merton type consumption−investment problems under partial information are reduced to the ones of full information and within the framework of a complete market model. Then, specializing to conditionally log−Gaussian diffusion models, concrete analysis about the optimal values and optimal strategies is performed by using analytical tools like Feynman−Kac formula, or HJB equations. The explicit solutions to the related forward-backward equations are also given.
Citation: |
[1] |
Bensoussan, A., Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions, Stochastics, 1983, 9: 169−222. doi: 10.1080/17442508308833253. |
[2] | Bensoussan, A., Stochastic Control of Partially Observable Systems, Cambridge University Press, Cambridge, 1992. |
[3] |
Bensoussan, A. and Nisio, M., Nonlinear semigroup arising in the control of diffusions with partial observation, Stochastics, 1990, 30: 1−45. |
[4] |
Bielecki, T. R. and Pliska, S. R., Risk sensitive dynamic asset management, Appl. Math. Optimization, 1999, 39: 337−360. doi: 10.1007/s002459900110. |
[5] |
Bismut, J. M., Conjigate convax functions in optimal stochastic control, J. Math. Anal. Appl., 1973, 44: 384−404. doi: 10.1016/0022-247X(73)90066-8. |
[6] |
Bismut, J. M., Linear quadratic optimal stochastic control with random coefficients, SIAM J. Cont., 1976, 14: 419−444. doi: 10.1137/0314028. |
[7] |
Björk, T., Davis, M. and Landen, C., Optimal investment under partial information, Math. Methods Oper.Res., 2010, 71(2): 371−399. doi: 10.1007/s00186-010-0301-x. |
[8] |
Briand, P. and Hu, Y., BSDE with quadratic growth and unbounded terminal value, Probab. Theory Related Fields, 2006, 136(4): 604−618. doi: 10.1007/s00440-006-0497-0. |
[9] |
Cox, J. C. and Huang, C.-F., Optimal consumption and portfolio policies when asset prices follow a diffusion process, J. Econom. Theory, 1989, 49: 33−83. doi: 10.1016/0022-0531(89)90067-7. |
[10] |
Davis, M. H. A. and Lleo, S., Risk-sensitive benchmarked asset management, Quant. Finance., 2008, 8: 415−426. doi: 10.1080/14697680701401042. |
[11] |
Englezos, N. and Karatzas, I., Utility maximization with habit formation: Dynamic programming and stochastic PDEs, SIAM J. Contr., 2009, 48(2): 481−520. doi: 10.1137/070686998. |
[12] |
Fleming, W. H. and Hernandez-Hernandez, D., An optimal consumption model with stochastic volatility, Finance and Stochastics, 2003, 7: 245−262. doi: 10.1007/s007800200083. |
[13] |
Fleming, W. H. and Hernandez-Hernandez, D., The tradeoff between consumption and investment in incomplete markets, Appl. Math. Optim., 2005, 52: 219−235. doi: 10.1007/s00245-005-0826-1. |
[14] |
Fleming, W. H. and Pang, T., An application of stochastic control theory to financial economics, SIAM J. Cont. Optim., 2004, 52: 502−531. |
[15] |
Fleming, W. H. and Sheu, S. J., Risk-sensitive control and an optimal investment model, Mathematical Finance, 1999, 10: 197−213. |
[16] |
Fleming, W. H. and Sheu, S. J., Risk-sensitive control and an optimal investment model. II, Ann. Appl. Probab., 2002, 12(2): 730−767. |
[17] |
Hata, H., Nagai, H. and Sheu, S. J., An optimal consumption problem for general factor models, SIAM J. Cont. Optim., 2018, 56(5): 52−89. |
[18] |
Hata, H. and Sheu, S. J., On the Hamilton-Jacobi-Bellman equation for an optimal consumption problem: I. Existence of solution, SIAM J. Cont. Optim., 2012, 50: 2373−2400. doi: 10.1137/110794845. |
[19] |
Hata, H. and Sheu, S. J., On the Hamilton-Jacobi-Bellman equation for an optimal consumption problem: II. Verification theorem, SIAM J. Cont. Optim., 2012, 50: 2401−2430. doi: 10.1137/110794857. |
[20] |
Hata, H. and Sheu, S. J., An optimal consumption and investment problem with partial information, Adv. Appl. Probab., 2018, 50(1): 131−153. doi: 10.1017/apr.2018.7. |
[21] |
Horst, U., Hu, Y., Imkeller, P., Réveillac, A. and Zhang, J., Forward-backward systems for expected utility maximization, Stoch. Processes. Appl., 2014, 124(5): 1813−1848. doi: 10.1016/j.spa.2014.01.004. |
[22] |
Karatzas, I., Lehoczky, J. P., Sethi, S. P. and Shreve, S. E., Optimal portfolio and consumption decisions for a small investor on a finite horizon, SIAM J. Cont. Optim., 1987, 25: 1557−1586. doi: 10.1137/0325086. |
[23] |
Karatzas, I., Lehoczky, S. E. and Shreve, S. E., Explicit solution of a general consumption/investment problems, Math. Oper. Res., 1986, 11: 261−294. doi: 10.1287/moor.11.2.261. |
[24] | Karatzas, I. and Shreve, S. E., Methods of Mathematical Finance, Springer-Verlag, New York, 2000. |
[25] |
Kobylanski, M., Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., 2000, 28(2): 558−602. |
[26] | Krylov, N. V., Controlled diffusion processes, Springer-Verlag, New York, 1980. |
[27] |
Kuroda, K. and Nagai, H., Risk-sensitive portfolio optimization on infinite time horizon, Stochastics and Stochastics Reports, 2002, 73: 309−331. doi: 10.1080/1045112021000025961. |
[28] |
Kushner, H. J., Necessary conditions for continuous parameter stochastic optimization problems, SIAM J. Contr., 1972, 10: 550−565. doi: 10.1137/0310041. |
[29] |
Kwakernaak, H., A minimum principle for stochastic control problems with output feedback, Syst. Contr. Lett., 1981, 1: 74−77. doi: 10.1016/S0167-6911(81)80017-5. |
[30] |
Lakner, P., Utility maximization with partial infromation, Stoch. Processes Appl., 1995, 56(2): 247−273. doi: 10.1016/0304-4149(94)00073-3. |
[31] |
Lindensjö, K., Optimal investment and consumption under partial information, Math. Meth. Oper. Res., 2016, 83: 87−107. doi: 10.1007/s00186-015-0521-1. |
[32] |
Lions, P. L., Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions, Acta Math., 1988, 161: 243−278. doi: 10.1007/BF02392299. |
[33] | Liptser, R. S. and Shiryaev, A. N., Statistics of Random Processes, I, II, Springer-Verlag, 2001. |
[34] | Ma, J. and Yong, J., Forwrd-Backward Stochastic Differential Equations and their Applications, Springer-Verlag, 2007. |
[35] |
Mania, M. and Santacroce, M., Exponential utility maximization with partial observation, Finance and Stochastics, 2010, 14(3): 419−448. doi: 10.1007/s00780-009-0114-z. |
[36] |
Mania, M. and Tevzadze, R., A unified characterization of q-optimal and minimal entropy martingale measures by semimartingale backward equations, Gerogian Math. J., 2003, 10: 289−310. doi: 10.1515/GMJ.2003.289. |
[37] |
Merton, R. C., Optimal consumption and portfolio rules in a continuous time model, J. Econom. Theory, 1971, 3: 373−413. doi: 10.1016/0022-0531(71)90038-X. |
[38] | Nagai, H., Risk-sensitive dynamic asset management with partial information, Stochastics in Finite and Infinite Dimensions, Birkhäuser, Boston, 2001. |
[39] |
Nagai, H., Optimal strategies for risk-sensitive portfolio optimization problems for general factor models, SIAM J. Control Optim., 2003, 41: 1779−1800. doi: 10.1137/S0363012901399337. |
[40] |
Nagai, H., Risk-sensitive portfolio optimization with full and partial information, Adv. Studies in Pure Math., 2004, 41: 257−278. |
[41] |
Nagai, H., H-J-B equations of optimal consumption-investment and verification theorems, Appl. Math. Optimization, 2015, 71(2): 279−311. doi: 10.1007/s00245-014-9258-0. |
[42] |
Nagai, H. and Peng, S., Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon, Annal. Appl. Probab., 2002, 12(1): 173−195. |
[43] |
Nagai, H. and Runggaldier, W. J., PDE approach to utility maximization for maket models with hidden Markov factors, Progress in Probability: Seminar on Stochastic Analysis, Random fields and Applications, 2007, 59: 493−506. |
[44] |
Pardoux, E. and Peng, S., Adapted solution of a backward stochastic differential equation, System Control Lett., 1990, 14: 55−61. doi: 10.1016/0167-6911(90)90082-6. |
[45] |
Peng, S., Stochastic Hamilton-Jacobi-Bellman equations, SIAM J. Control Optim., 1982, 30: 284−304. |
[46] |
Peng, S., Backward stochastic differential equations and applications to optimal control, Appl. Math. Optimization, 1993, 27: 125−144. doi: 10.1007/BF01195978. |
[47] |
Pliska, S. R., A stochastic calculus model of continuous trading: Optimal portfolios, Math. Oper. Res., 1986, 11: 239−246. |
[48] |
Putschögle, W. and Sass, J., Optimal consumption and investment under partial information, Dec. Econ. Finan., 2008, 31(2): 137−170. doi: 10.1007/s10203-008-0082-3. |
[49] |
Sass, J. and Haussmann, U. G., Optimizing the terminal wealth under partial information: The drift process as a continuous Markov chain, Finance and Stochastics, 2004, 8(4): 553−577. |
[50] |
Tamura, H. and Watanabe, Y., Risk-sensitive portfolio optimization problems for hidden Markov factors on infinite time horizon, Asymptotic Analysis, 2011, 75: 169−209. doi: 10.3233/ASY-2011-1059. |
[51] |
Tang, S., The maximum principle for partially observed optimal control of stochastic differential equations, SIAM J. Control Optim., 1998, 36(5): 1596−1617. doi: 10.1137/S0363012996313100. |
[52] |
Tang, S., General linear quadratic stochastic control problems with random cofficients: Linear stochastic Hamilton systems and backward stochastic Riccati equations, SIAM J. Control Optim., 2003, 42: 53−75. doi: 10.1137/S0363012901387550. |