$ h $ | M=1000 | M=10000 | M=100000 |
0.05 | 0.009743 (4.87e-05) | 0.007224 (7.48e-06) | 0.005691 (1.37e-06) |
0.02 | 0.009107 (4.66e-05) | 0.006597 (4.63e-06) | 0.004895 (1.69e-06) |
0.01 | 0.008833 (3.73e-05) | 0.005778 (7.85e-06) | 0.004374 (9.73e-07) |
In this paper, we present a probabilistic numerical method for a class of forward utilities in a stochastic factor model. For this purpose, we use the representation of forward utilities using the ergodic Backward Stochastic Differential Equations (eBSDEs) introduced by Liang and Zariphopoulou in [27]. We establish a connection between the solution of the ergodic BSDE and the solution of an associated BSDE with random terminal time $ \tau $, defined as the hitting time of the positive recurrent stochastic factor. The viewpoint based on BSDEs with random horizon yields a new characterization of the ergodic cost $ \lambda $ which is a part of the solution of the eBSDEs. In particular, for a certain class of eBSDEs with quadratic generator, the Cole-Hopf transformation leads to a semi-explicit representation of the solution as well as a new expression of the ergodic cost $ \lambda $. The latter can be estimated with Monte Carlo methods. We also propose two new deep learning numerical schemes for eBSDEs. Finally, we present numerical results for different examples of eBSDEs and forward utilities together with the associated investment strategies.
Citation: |
Table 1.
Mean absolute error (variance) on
$ h $ | M=1000 | M=10000 | M=100000 |
0.05 | 0.009743 (4.87e-05) | 0.007224 (7.48e-06) | 0.005691 (1.37e-06) |
0.02 | 0.009107 (4.66e-05) | 0.006597 (4.63e-06) | 0.004895 (1.69e-06) |
0.01 | 0.008833 (3.73e-05) | 0.005778 (7.85e-06) | 0.004374 (9.73e-07) |
Table 2.
Mean absolute error (variance) on
$ h $ | M=1000 | M=10000 | M=100000 |
0.05 | 0.002988 (2.86e-06) | 0.002955 (2.50e-07) | 0.002904 (1.99e-08) |
0.02 | 0.002136 (2.30e-06) | 0.001617 (4.98e-07) | 0.001528 (1.67e-08) |
0.01 | 0.001637 (1.29e-06) | 0.000780 (2.62e-07) | 0.000939 (3.55e-08) |
Table 3.
Comparison of
Example | Exact | MC | GeBSDE | LAeBSDE |
Example 5.1 | 0 | −0.004374 (9.73e-07) | −0.003782 (4.28e-05) | −0.004280 (3.07e-05) |
Example 5.2 | 0.398942 | 0.399882 (3.55e-08) | 0.400130 (1.53e-05) | 0.397600 (4.63e-05) |
Table 4.
Mean (variance) on
$ h $ | M=1000 | M=10000 | M=100000 |
0.10 | 0.192683 (3.48e-04) | 0.201704 (5.5e-05) | 0.206999 (3.9e-05) |
0.05 | 0.187675 (8.03e-04) | 0.183987 (2.17e-04) | 0.182469 (2.6e-05) |
0.02 | 0.159276 (1.55e-03) | 0.173734 (4.17e-04) | 0.173557 (1.31e-04) |
0.01 | 0.159119 (1.16e-03) | 0.174493 (1.61e-03) | 0.169749 (1.8e-04) |
[1] |
Avanesyan, L., Shkolnikov, M. and Sircar, R., Construction of a class of forward performance processes in stochastic factor models, and an extension of Widder’s theorem, Finance and Stochastics, 2020, 24(4): 981−1011. doi: 10.1007/s00780-020-00436-1.![]() ![]() |
[2] |
Bender, C. and Steiner, J., Least-squares Monte Carlo for backward SDEs, In: Carmona, R., Del Moral, P., Hu, P. and Oudjane, N.(eds.) , Numerical Methods in Finance, Springer Proceedings in Mathematics, Springer, Berlin, Heidelberg, 2012, 12: 257–289.
![]() |
[3] |
Bouchard, B., Elie, R. and Touzi, N., Discrete-time approximation of BSDEs and probabilistic schemes for fully nonlinear PDEs, Advanced Financial Modelling, 2009, 8: 91−124. doi: 10.1515/9783110213140.91.![]() ![]() |
[4] |
Bouchard, B., Geiss, S. and Gobet, E., First time to exit of a continuous ito process: General moment estimates and L1-convergence rate for discrete time approximations, Bernoulli, 2017, 23(3): 1631−1662. doi: 10.3150/15-BEJ791.![]() ![]() |
[5] |
Bouchard, B. and Menozzi, S., Strong approximations of BSDEs in a domain, Bernoulli, 2009, 15(4): 1117−1147. doi: 10.3150/08-BEJ181.![]() ![]() |
[6] |
Cattiaux, P., Guillin, A. and Zitt, P. A., Poincaré inequalities and hitting times, Annales de l’I.H.P. Probabilités et statistiques, 2013, 49(1): 95−118. doi: 10.1214/11-AIHP447.![]() ![]() |
[7] |
Chan-Wai-Nam, Q., Mikael, J. and Warin, X., Machine learning for semi linear PDEs, Journal of Scientific Computing, 2019, 79(3): 1667−1712. doi: 10.1007/s10915-019-00908-3.![]() ![]() |
[8] |
Chassagneux, J.-F. and Richou, A., Numerical simulation of quadratic BSDEs, The Annals of Applied Probability, 2016, 26(1): 262−304. doi: 10.1214/14-AAP1090.![]() ![]() |
[9] |
Chong, W. F., Pricing and hedging equity-linked life insurance contracts beyond the classical paradigm: The principle of equivalent forward preferences, Insurance: Mathematics and Economics, 2019, 88: 93−107. doi: 10.1016/j.insmatheco.2019.06.003.![]() ![]() |
[10] |
Debussche, A., Hu, Y. and Tessitore, G., Ergodic BSDEs under weak dissipative assumptions, Stochastic Processes and their Applications, 2011, 121(3): 407−426. doi: 10.1016/j.spa.2010.11.009.![]() ![]() |
[11] |
Dos Reis, G. and Platonov, V., Forward utilities and mean-field games under relative performance concerns, In: Bernardin, C., Golse, F., Gonçalves, P., Ricci, V. and Soares, A. J. (eds.), From Particle Systems to Partial Differential Equations: International Conference, Particle Systems and PDEs VI, VⅡ and VⅢ, 2017–2019, Springer, Cham, 2021: 227–251.
![]() |
[12] |
E, W. and Mattingly, J. C., Ergodicity for the Navier-Stokes equation with degenerate random forcing: Finite-dimensional approximation, Communications on Pure and Applied Mathematics, 2001, 54(11): 1386−1402. doi: 10.1002/cpa.10007.![]() ![]() |
[13] |
El Karoui, N., Hamadene, S. and Matoussi, A., Eight BSDEs and Applications, In: Carmona, R.(ed.), Indifference Pricing : Theory and Applications, Princeton University Press, 2008: 267-320.
![]() |
[14] |
El Karoui, N., Hillairet, C. and Mrad, M., Consistent utility of investment and consumption: A forward/backward spde viewpoint, Stochastics, 2018, 90(6): 927−954. doi: 10.1080/17442508.2018.1457676.![]() ![]() |
[15] |
El Karoui, N., Hillairet, C. and Mrad, M., Ramsey rule with forward/backward utility for long-term yield curves modeling, Decisions in Economics and Finance, 2022, 45(1): 375−414. doi: 10.1007/s10203-022-00370-1.![]() ![]() |
[16] |
El Karoui, N. and Mrad, M., An exact connection between two solvable SDEs and a nonlinear utility stochastic PDE, SIAM Journal on Financial Mathematics, 2013, 4(1): 697−736. doi: 10.1137/10081143X.![]() ![]() |
[17] |
Fuhrman, M., Hu, Y. and Tessitore, G., Ergodic BSDEs and optimal ergodic control in Banach spaces, SIAM Journal on Control and Optimization, 2009, 48(3): 1542−1566. doi: 10.1137/07069849X.![]() ![]() |
[18] |
Germain, M., Pham, H., Warin, X., Neural networks-based algorithms for stochastic control and PDEs in finance, In: Capponi, A. and Lehalle, C. A.(eds.), Machine Learning and Data Sciences for Financial Markets, Cambridge University Press, 2023: 426–452.
![]() |
[19] |
Gobet, E. and Mrad, M., Convergence rate of strong approximations of compound random maps, application to SPDEs, Discrete & Continuous Dynamical Systems-Series B, 2018, 23(10): 4455–4476.
![]() |
[20] |
E, W., Han, J. and Jentzen, A., Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Communications in Mathematics and Statistics, 2017, 5(4): 349−380. doi: 10.1007/s40304-017-0117-6.![]() ![]() |
[21] |
Han, J. and Long, J., Convergence of the deep BSDE method for coupled FBSDEs, Probability, Uncertainty and Quantitative Risk, 2020, 5(1): 5 doi: 10.1186/s41546-020-00047-w.![]() ![]() |
[22] |
Hillairet, C., Kaakai, S. and Mrad, M., Time-consistent pension policy with minimum guarantee and sustainability constraint, Probability, Uncertainty and Quantitative Risk, 2024, 9(1): 35–64.
![]() |
[23] |
Hu, Y. and Lemonnier, F., Ergodic BSDE with unbounded and multiplicative underlying diffusion and application to large time behaviour of viscosity solution of HJB equation, Stochastic Processes and their Applications, 2019, 129(10): 4009−4050. doi: 10.1016/j.spa.2018.11.008.![]() ![]() |
[24] |
Hu, Y., Liang, G. and Tang, S., Systems of ergodic BSDEs arising in regime switching forward performance processes, SIAM Journal on Control and Optimization, 2020, 58(4): 2503−2534. doi: 10.1137/18M1234783.![]() ![]() |
[25] |
Huré, C., Pham, H. and Warin, X., Deep backward schemes for high-dimensional nonlinear PDEs, Mathematics of Computation, 2020, 89(324): 1547−1579. doi: 10.1090/mcom/3514.![]() ![]() |
[26] |
Kapllani, L. and Teng, L., Deep learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations, Discrete and Continuous Dynamical Systems - B, 2024, 29(4): 1695−1729. doi: 10.3934/dcdsb.2023151.![]() ![]() |
[27] |
Liang, G. and Zariphopoulou, T., Representation of homothetic forward performance processes in stochastic factor models via ergodic and infinite horizon bsde, SIAM Journal on Financial Mathematics, 2017, 8(1): 344−372. doi: 10.1137/15M1048847.![]() ![]() |
[28] |
Loukianov, O., Loukianova, D. and Song, S., Spectral gaps and exponential integrability of hitting times for linear diffusions, Annales de l’IHP Probabilités et statistiques, 2011, 47: 679–698.
![]() |
[29] |
Matoussi, A. and Sabbagh, W., Numerical computation for backward doubly SDEs with random terminal time, Monte Carlo Methods and Applications, 2016, 22(3): 229−258. doi: 10.1515/mcma-2016-0111.![]() ![]() |
[30] |
Mattingly, J. C., Stuart, A. M. and Higham, D. J., Ergodicity for SDEs and approximations: Locally lipschitz vector fields and degenerate noise, Stochastic Processes and their Applications, 2002, 101(2): 185−232. doi: 10.1016/S0304-4149(02)00150-3.![]() ![]() |
[31] |
Musiela, M. and Zariphopoulou, T., Investments and forward utilities, Technical report, 2006.
![]() |
[32] |
Musiela, M. and Zariphopoulou, T., Stochastic partial differential equations and portfolio choice, In: Chiarella, C. and Novikov, A.(eds.), Contemporary Quantitative Finance, Springer, Berlin, Heidelberg, 2010: 195–216.
![]() |
[33] |
Nadtochiy, S. and Zariphopoulou, T., A class of homothetic forward investment performance processes with non-zero volatility, In: Kabanov, Y., Rutkowski, M. and Zariphopoulou, T.(eds.), Inspired by Finance: The Musiela Festschrift, 2014: 475–504.
![]() |
[34] |
Ng, K. T. H. and Chong, W. F., Optimal investment in defined contribution pension schemes with forward utility preferences, Insurance: Mathematics and Economics, 2024, 114: 192−211. doi: 10.1016/j.insmatheco.2023.12.001.![]() ![]() |
[35] |
Pardoux, E., Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, In: Decreusefond, L., Øksendal, B., Gjerde, J. and Üstünel, A. S.(eds.), Stochastic Analysis and Related Topics VI: Proceedings of the Sixth Oslo—Silivri Workshop Geilo 1996, Springer, 1998: 79–127.
![]() |
[36] |
Pham, H., Warin, X. and Germain, M., Neural networks-based backward scheme for fully nonlinear PDEs, Partial Differential Equations and Applications, 2021, 2(1): 16. doi: 10.1007/s42985-020-00062-8.![]() ![]() |
[37] |
Shkolnikov, M., Sircar, R. and Zariphopoulou, T., Asymptotic analysis of forward performance processes in incomplete markets and their ill-posed HJB equations, SIAM Journal on Financial Mathematics, 2016, 7(1): 588−618. doi: 10.1137/15M1016059.![]() ![]() |
[38] |
Talay, D., Second-order discretization schemes of stochastic differential systems for the computation of the invariant law, Stochastics and Stochastic Reports,, 1990, 29(1): 13−36. doi: 10.1080/17442509008833606.![]() ![]() |
Empirical loss function
Convergence of
Mean relative error (5.12) on Y for different time steps
Example of trajectory of Y over
Integral error (5.13) on
Integral error (5.13) on
Empirical loss function
Convergence of
Integral error (5.13) on
Mean relative error (5.12) on
Integral error (5.13) on
Rescaled optimal strategy
Empirical loss function
Convergence of
Empirical loss function
Convergence of
Dynamics of approximated utility
Monotonicity and concavity of approximated utility
Random field