• Previous Article
    Inspiring and engaging high school students with science and technology education in regional Australia
  • STEME Home
  • This Issue
  • Next Article
    Good practices of delivery and teaching leadership for online educators in technical disciplines: A perspective
May  2021, 1(2): 104-113. doi: 10.3934/steme.2021008

Mathematics skills and STEM multidisciplinary literacy: Role of learning capacity

1. 

Department of Business Administration, Iqra University, Karachi, Pakistan

2. 

College of Education, Zhejiang University, China

* Correspondence: xszhai@zju.edu.cn; Tel: +86-13866116992

Received  March 2021 Revised  April 2021 Published  May 2021

Previous studies highlighted the role of STEM (science, technology, engineering, and mathematics) education in the development of mathematical skills while how mathematical skills influence STEM multidisciplinary literacy is under researched. Therefore, the purpose of current study is to explore the significance of mathematical skills (spatial imagination ability, calculation ability, and reasoning ability) in STEM multidisciplinary literacy. Further, to better understand the relationship between mathematical skills and STEM multidisciplinary literacy, students learning capacities was investigated as a mechanism. The theoretical findings of the study show that spatial imagination ability, calculation ability, and reasoning ability positively linked with STEM multidisciplinary literacy. Additionally, the findings show that students learning capabilities mediate the relationship between mathematical skills and STEM multidisciplinary literacy. Future directions of the study are also discussed.

Citation: Usman Ghani, Xuesong Zhai, Riaz Ahmad. Mathematics skills and STEM multidisciplinary literacy: Role of learning capacity. STEM Education, 2021, 1 (2) : 104-113. doi: 10.3934/steme.2021008
References:
[1]

K.-H. TsengC.-C. ChangS.-J. Lou and W.-P. Chen, Attitudes towards science, technology, engineering, International Journal of Technology and Education, 23 (2013), p.87-102.   Google Scholar

[2]

Laboy-Rush, D., Whitepaper: Integrated STEM Education through Project-Based Learning, 2011. Retrieved December 15, 2015, from http://www.learning.com/stem/whitepaper/ Google Scholar

[3]

E.C. PrimaT.D. Oktaviani and H. Sholihin, STEM learning on electricity using Arduino-phet based experiment to improve 8th grade students' STEM literacy, Journal of Physics: Conference Series, 1013 (2018), 012030.   Google Scholar

[4]

M. WolfmeyerJ. Lupinacci and N. Chesky, Critical education, Critical Education, 8 (2017), p.37-39.  doi: 10.1007/978-1-137-42617-8_15.  Google Scholar

[5]

K. Kumashiro, Why and how STEM education matters in social justice movements, The Journal of Educational Foundations, 31 (2018), p.3-5.   Google Scholar

[6]

L.J. Hefty, Applying mathematics during engineering design challenges can help children develop critical thinking, problem solving, and communication skills, Teaching Children Mathematics, 21 (2015), p.422-429.   Google Scholar

[7]

Magiera, M.T., Model eliciting activities: A home run. Mathematics Teaching in the Middle School, (2013. 18(6): p. 348-355. Google Scholar

[8]

M.G. McGee, Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences, Psychological Bulletin, 86 (1979), p.889-918.   Google Scholar

[9]

J.P. da PonteJ. Mata-Pereira and A. Henriques, O raciocínio matemático nos alunos do ensino básico e do ensino superior, Práxis Educativa (Brasil), 7 (2012), p.355-377.   Google Scholar

[10]

M. KyttäläP. AunioJ.E. LehtoJ. Van Luit and J. Hautamaki, Visuospatial working memory and early numeracy, Educational and Child Psychology, 20 (2003), p.65-76.   Google Scholar

[11]

C. Rasmussen and J. Bisanz, Representation and working memory in early arithmetic, Journal of Experimental Child Psychology, 91 (2005), p.137-157.   Google Scholar

[12]

Y.L. Cheng and K.S. Mix, Spatial Training Improves Children's Mathematics Ability, Journal of Cognition and Development, 15 (2014), p.2-11.   Google Scholar

[13]

Z. HawesJ. MossB. Caswell and D. Poliszczuk, Effects of mental rotation training on children's spatial and mathematics performance: A randomized controlled study, Trends in Neuroscience and Education, 4 (2015), p.60-68.   Google Scholar

[14]

Maass, K., Geiger, V., Ariza, M.R., Goos, M., The role of mathematics in interdisciplinary STEM education. ZDM-Mathematics Education, 2019. 51(6): p. 869-884. Google Scholar

[15]

T. Martín-PáezD. AguileraF.J. Perales-Palacios and J. M. VílchezGonzález, What are we talking about when we talk about STEM education? A review of literature, Science Education, 103 (2019), p.799-822.   Google Scholar

[16]

Caprile, M., Palmén, R., Sanz, P., Dente, G., Encouraging STEM studies: Labour market situation and comparison of practices targeted at young people in different member states. 2015, Brussels, Belgium: European Union. Retrieved October 19, 2019 from http://www.europarl.europa.eu/RegData/etudes/STUD/2015/542199/IPOL_STU(2015)542199_EN.pdf. Google Scholar

[17]

National Research Council, STEM integration in K-12 education: Status, prospects, and an agenda for research. 2014, National Academies Press. Google Scholar

[18]

Bybee, R.W., The Case for Education Challenges and Opportunities. 2013. Google Scholar

[19]

A. Zollman, Learning for STEM literacy: STEM literacy for learning, School Science and Mathematics, 112 (2012), p.12-19.   Google Scholar

[20]

Schmidt, W.H., Houang, R.T., Lack of focus in the mathematics curriculum: A symptom or a cause? in Lessons learned: What international assessments tell us about math achievement, T. Loveless, Ed. 2007, Washington: Brookings Institution Press. p. 65-84. Google Scholar

[21]

E.M. SilkR. HigashiR. Shoop and C.D. Schunn, Designing technology activities that teach mathematics, The Technology Teacher, 69 (2010), p.21-27.   Google Scholar

[22]

Hebb, D.O., Textbook of Psychology. 1972, Philadelphia, USA: W. B. Saunders and Co. Google Scholar

[23]

D'Oliveira, T.C., Dynamic spatial ability: An exploratory analysis and a confirmatory study. International Journal of Aviation Psychology, 2004. 14: p. 19-38. Google Scholar

[24]

J. Eliot and A. Hauptman, Different dimensions of spatial ability, Studies in Science Education, 8 (1981), p.45-66.   Google Scholar

[25] J.B. Carroll, Human Cognitive Abilities, Cambridge University Press, NewYork, 1993.   Google Scholar
[26]

W. SusilawtiD. Suryadi and J.A. Dahlan, The improvement of mathematical spatial visualization ability of student through cognitive conflict, International Electronic Journal of Mathematics Education, 12 (2017), p.155-166.   Google Scholar

[27]

Lappan, G., Fey, J.T., Fitzgerald, W.M., Friel, S.N., Philips, E.D., Getting to know connected mathematics: An implementation guide. 2002, Connected mathematics project. Google Scholar

[28]

J. Russell-Gebbett, Skills and strategies: pupils' approaches to three-dimensional problems in biology, Journal of Biological Education, 19 (1985), 293e298.   Google Scholar

[29]

K. Rochford, Spatial learning disabilities and underachievement among university anatomy students, Medical Education, 19 (1985), p.13-26.   Google Scholar

[30]

Gardner, H., Frames of mind: The theory of multiple intelligences. 10th ed. 1993, New York: Basic Books. Google Scholar

[31]

Marlina, R., Purwadi, Upaya Meningkatkan Kemampuan Berhitung melalui Model Pembelajaran Kooperatif Struktural Permainan Ular Tangga TK Marta'ush Shibyan Singocandi Kudus. Jurnal penelitian PAUDIA, 2014. Google Scholar

[32]

M. DurandC. HulmeR. Larkin and M. Snowling, The cognitive foundations of reading and arithmetic skills in 7-to 10-year-olds, Journal of Experimental Child Psychology, 91 (2005), p.113-136.   Google Scholar

[33]

S.A. HechtJ.K. TorgesenR.K. Wagner and C.A. Rashotte, The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: a longitudinal study from second to fifth grades, Journal of Experimental Child Psychology, 79 (2001), p.192-227.   Google Scholar

[34]

N.C. JordanL.B. Hanich and D. Kaplan, Arithmetic fact mastery in young children: A longitudinal investigation, Journal of Experimental Child Psychology, 85 (2003), p.103-119.   Google Scholar

[35]

A.J. Baroody, Why children have difficulty mastering the basic number combinations and how to help them, Teaching Children Mathematics, 13 (2006), p.22-31.   Google Scholar

[36]

Cowan, R., Does it all add up? Changes in children's knowledge of addition facts, strategies, and principles, in The development of arithmetic concepts and skills: Constructing adaptive expertise, A.J. Baroody & A. Dowker Ed. 2003, Mahwah, NJ: Lawrence Erlbaum Associates. p. 35-74. Google Scholar

[37]

Reys, R.E., Suydam, M.N., Lindquist, M.M., Smith, N.L., Helping children learn mathematics 5th Ed. 1998, Boston: Allyn & Bacon. Google Scholar

[38]

Aisyah, N., Pengembangan Pembelajaran Matematika SD. 2007, Jakarta: Direktorat Jenderal Pendidikan Tinggi Departemen Pendidikan Nasional. Google Scholar

[39]

Harlow, L.L., Burkholder, G.J., Morrow, J.A., Evaluating attitudes, skill and performance in a learning-enhanced quantitative methods course: A structural modelling approach. Structural Equation Modeling, 2002. 9: p. 413-430. Google Scholar

[40]

Bayliss, A., Watts, K., Student Performance in Mathematics as Correlate of their Performance in Chemistry. Journal of Quality Education, 2002. 2(1): p. 11-25. Google Scholar

[41]

Adeboyel, A.O., Interesting Relationships between Mathematics and Science. Journal of Mathematics and Science, 1999. 1(2): p. 22-29. Google Scholar

[42]

Turmudi, The cornerstone of Philosophy and Mathematics Learning Theory (paradigm Explorative and Investigation). 2008, Jakarta: Leuser Cita Library. Google Scholar

[43]

Nurdalilah., dkk., Perbedaan Kemampuan Penalaran Matematika dan Pemecahan Masalah pada Pembelajaran Berbasis Masalah dan Pembelajaran Konvensional di SMA Negeri 1 Kualuh Selatan. Jurnal Pendidikan Matematika PARADIKMA, 2012. 6(2): p. 109-11. Google Scholar

[44]

J. Lithner, A research framework for creative and imitative reasoning, Educational Studies in Mathematics, 67 (2008), p.255-276.   Google Scholar

[45]

Shadiq, F., Pemecahan masalah, penalaran dan komunikasi. 2004, Yogyakarta: PPPG Matematika. Google Scholar

[46]

Bani, A., Meningkatkan Kemampuan Pemahaman dan Penalaran Matematika Siswa Sekolah Menengah Pertama Melalui Pembelajaran Penemuan Terbimbing, SPs UPI, Bandung. 2011. Google Scholar

[47]

C.M. Adams, Collective trust: A social indicator of instructional capacity, Journal of Educational Administration, 51 (2013), p.1-36.   Google Scholar

[48]

B. Kotchoubey, Human consciousness: Where is it from and what is it for, Frontiers in Psychology, 9 (2018), p.1-17.   Google Scholar

[49]

Rogers, E.M., Diffusion of innovations.5th Ed. 2003, New York: Free Press. Google Scholar

[50]

A. TuranA.O. Tunc and C. Zehir, A theoretical model proposal: Personal innovativeness and user involvement as antecedents of unified theory of acceptance and use of technology, Procedia & Behavioural Sciences, 210 (2015), p.43-51.   Google Scholar

[51]

Babić, S., Factors that influence academic teacher's acceptance of e-learning technology in blended learning environment, in E-learning-organizational infrastructure and tools for specific areas, A. Guelfi, Ed. 2012, Europe: InTech. p. 1–18. Google Scholar

[52]

A.B. Adegoke, Effect of direct teacher influence on dependent-prone students' learning outcomes in secondary school mathematics, Electronic Journal of Research in Educational Psychology, 9 (2011), p.283-308.   Google Scholar

show all references

References:
[1]

K.-H. TsengC.-C. ChangS.-J. Lou and W.-P. Chen, Attitudes towards science, technology, engineering, International Journal of Technology and Education, 23 (2013), p.87-102.   Google Scholar

[2]

Laboy-Rush, D., Whitepaper: Integrated STEM Education through Project-Based Learning, 2011. Retrieved December 15, 2015, from http://www.learning.com/stem/whitepaper/ Google Scholar

[3]

E.C. PrimaT.D. Oktaviani and H. Sholihin, STEM learning on electricity using Arduino-phet based experiment to improve 8th grade students' STEM literacy, Journal of Physics: Conference Series, 1013 (2018), 012030.   Google Scholar

[4]

M. WolfmeyerJ. Lupinacci and N. Chesky, Critical education, Critical Education, 8 (2017), p.37-39.  doi: 10.1007/978-1-137-42617-8_15.  Google Scholar

[5]

K. Kumashiro, Why and how STEM education matters in social justice movements, The Journal of Educational Foundations, 31 (2018), p.3-5.   Google Scholar

[6]

L.J. Hefty, Applying mathematics during engineering design challenges can help children develop critical thinking, problem solving, and communication skills, Teaching Children Mathematics, 21 (2015), p.422-429.   Google Scholar

[7]

Magiera, M.T., Model eliciting activities: A home run. Mathematics Teaching in the Middle School, (2013. 18(6): p. 348-355. Google Scholar

[8]

M.G. McGee, Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences, Psychological Bulletin, 86 (1979), p.889-918.   Google Scholar

[9]

J.P. da PonteJ. Mata-Pereira and A. Henriques, O raciocínio matemático nos alunos do ensino básico e do ensino superior, Práxis Educativa (Brasil), 7 (2012), p.355-377.   Google Scholar

[10]

M. KyttäläP. AunioJ.E. LehtoJ. Van Luit and J. Hautamaki, Visuospatial working memory and early numeracy, Educational and Child Psychology, 20 (2003), p.65-76.   Google Scholar

[11]

C. Rasmussen and J. Bisanz, Representation and working memory in early arithmetic, Journal of Experimental Child Psychology, 91 (2005), p.137-157.   Google Scholar

[12]

Y.L. Cheng and K.S. Mix, Spatial Training Improves Children's Mathematics Ability, Journal of Cognition and Development, 15 (2014), p.2-11.   Google Scholar

[13]

Z. HawesJ. MossB. Caswell and D. Poliszczuk, Effects of mental rotation training on children's spatial and mathematics performance: A randomized controlled study, Trends in Neuroscience and Education, 4 (2015), p.60-68.   Google Scholar

[14]

Maass, K., Geiger, V., Ariza, M.R., Goos, M., The role of mathematics in interdisciplinary STEM education. ZDM-Mathematics Education, 2019. 51(6): p. 869-884. Google Scholar

[15]

T. Martín-PáezD. AguileraF.J. Perales-Palacios and J. M. VílchezGonzález, What are we talking about when we talk about STEM education? A review of literature, Science Education, 103 (2019), p.799-822.   Google Scholar

[16]

Caprile, M., Palmén, R., Sanz, P., Dente, G., Encouraging STEM studies: Labour market situation and comparison of practices targeted at young people in different member states. 2015, Brussels, Belgium: European Union. Retrieved October 19, 2019 from http://www.europarl.europa.eu/RegData/etudes/STUD/2015/542199/IPOL_STU(2015)542199_EN.pdf. Google Scholar

[17]

National Research Council, STEM integration in K-12 education: Status, prospects, and an agenda for research. 2014, National Academies Press. Google Scholar

[18]

Bybee, R.W., The Case for Education Challenges and Opportunities. 2013. Google Scholar

[19]

A. Zollman, Learning for STEM literacy: STEM literacy for learning, School Science and Mathematics, 112 (2012), p.12-19.   Google Scholar

[20]

Schmidt, W.H., Houang, R.T., Lack of focus in the mathematics curriculum: A symptom or a cause? in Lessons learned: What international assessments tell us about math achievement, T. Loveless, Ed. 2007, Washington: Brookings Institution Press. p. 65-84. Google Scholar

[21]

E.M. SilkR. HigashiR. Shoop and C.D. Schunn, Designing technology activities that teach mathematics, The Technology Teacher, 69 (2010), p.21-27.   Google Scholar

[22]

Hebb, D.O., Textbook of Psychology. 1972, Philadelphia, USA: W. B. Saunders and Co. Google Scholar

[23]

D'Oliveira, T.C., Dynamic spatial ability: An exploratory analysis and a confirmatory study. International Journal of Aviation Psychology, 2004. 14: p. 19-38. Google Scholar

[24]

J. Eliot and A. Hauptman, Different dimensions of spatial ability, Studies in Science Education, 8 (1981), p.45-66.   Google Scholar

[25] J.B. Carroll, Human Cognitive Abilities, Cambridge University Press, NewYork, 1993.   Google Scholar
[26]

W. SusilawtiD. Suryadi and J.A. Dahlan, The improvement of mathematical spatial visualization ability of student through cognitive conflict, International Electronic Journal of Mathematics Education, 12 (2017), p.155-166.   Google Scholar

[27]

Lappan, G., Fey, J.T., Fitzgerald, W.M., Friel, S.N., Philips, E.D., Getting to know connected mathematics: An implementation guide. 2002, Connected mathematics project. Google Scholar

[28]

J. Russell-Gebbett, Skills and strategies: pupils' approaches to three-dimensional problems in biology, Journal of Biological Education, 19 (1985), 293e298.   Google Scholar

[29]

K. Rochford, Spatial learning disabilities and underachievement among university anatomy students, Medical Education, 19 (1985), p.13-26.   Google Scholar

[30]

Gardner, H., Frames of mind: The theory of multiple intelligences. 10th ed. 1993, New York: Basic Books. Google Scholar

[31]

Marlina, R., Purwadi, Upaya Meningkatkan Kemampuan Berhitung melalui Model Pembelajaran Kooperatif Struktural Permainan Ular Tangga TK Marta'ush Shibyan Singocandi Kudus. Jurnal penelitian PAUDIA, 2014. Google Scholar

[32]

M. DurandC. HulmeR. Larkin and M. Snowling, The cognitive foundations of reading and arithmetic skills in 7-to 10-year-olds, Journal of Experimental Child Psychology, 91 (2005), p.113-136.   Google Scholar

[33]

S.A. HechtJ.K. TorgesenR.K. Wagner and C.A. Rashotte, The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: a longitudinal study from second to fifth grades, Journal of Experimental Child Psychology, 79 (2001), p.192-227.   Google Scholar

[34]

N.C. JordanL.B. Hanich and D. Kaplan, Arithmetic fact mastery in young children: A longitudinal investigation, Journal of Experimental Child Psychology, 85 (2003), p.103-119.   Google Scholar

[35]

A.J. Baroody, Why children have difficulty mastering the basic number combinations and how to help them, Teaching Children Mathematics, 13 (2006), p.22-31.   Google Scholar

[36]

Cowan, R., Does it all add up? Changes in children's knowledge of addition facts, strategies, and principles, in The development of arithmetic concepts and skills: Constructing adaptive expertise, A.J. Baroody & A. Dowker Ed. 2003, Mahwah, NJ: Lawrence Erlbaum Associates. p. 35-74. Google Scholar

[37]

Reys, R.E., Suydam, M.N., Lindquist, M.M., Smith, N.L., Helping children learn mathematics 5th Ed. 1998, Boston: Allyn & Bacon. Google Scholar

[38]

Aisyah, N., Pengembangan Pembelajaran Matematika SD. 2007, Jakarta: Direktorat Jenderal Pendidikan Tinggi Departemen Pendidikan Nasional. Google Scholar

[39]

Harlow, L.L., Burkholder, G.J., Morrow, J.A., Evaluating attitudes, skill and performance in a learning-enhanced quantitative methods course: A structural modelling approach. Structural Equation Modeling, 2002. 9: p. 413-430. Google Scholar

[40]

Bayliss, A., Watts, K., Student Performance in Mathematics as Correlate of their Performance in Chemistry. Journal of Quality Education, 2002. 2(1): p. 11-25. Google Scholar

[41]

Adeboyel, A.O., Interesting Relationships between Mathematics and Science. Journal of Mathematics and Science, 1999. 1(2): p. 22-29. Google Scholar

[42]

Turmudi, The cornerstone of Philosophy and Mathematics Learning Theory (paradigm Explorative and Investigation). 2008, Jakarta: Leuser Cita Library. Google Scholar

[43]

Nurdalilah., dkk., Perbedaan Kemampuan Penalaran Matematika dan Pemecahan Masalah pada Pembelajaran Berbasis Masalah dan Pembelajaran Konvensional di SMA Negeri 1 Kualuh Selatan. Jurnal Pendidikan Matematika PARADIKMA, 2012. 6(2): p. 109-11. Google Scholar

[44]

J. Lithner, A research framework for creative and imitative reasoning, Educational Studies in Mathematics, 67 (2008), p.255-276.   Google Scholar

[45]

Shadiq, F., Pemecahan masalah, penalaran dan komunikasi. 2004, Yogyakarta: PPPG Matematika. Google Scholar

[46]

Bani, A., Meningkatkan Kemampuan Pemahaman dan Penalaran Matematika Siswa Sekolah Menengah Pertama Melalui Pembelajaran Penemuan Terbimbing, SPs UPI, Bandung. 2011. Google Scholar

[47]

C.M. Adams, Collective trust: A social indicator of instructional capacity, Journal of Educational Administration, 51 (2013), p.1-36.   Google Scholar

[48]

B. Kotchoubey, Human consciousness: Where is it from and what is it for, Frontiers in Psychology, 9 (2018), p.1-17.   Google Scholar

[49]

Rogers, E.M., Diffusion of innovations.5th Ed. 2003, New York: Free Press. Google Scholar

[50]

A. TuranA.O. Tunc and C. Zehir, A theoretical model proposal: Personal innovativeness and user involvement as antecedents of unified theory of acceptance and use of technology, Procedia & Behavioural Sciences, 210 (2015), p.43-51.   Google Scholar

[51]

Babić, S., Factors that influence academic teacher's acceptance of e-learning technology in blended learning environment, in E-learning-organizational infrastructure and tools for specific areas, A. Guelfi, Ed. 2012, Europe: InTech. p. 1–18. Google Scholar

[52]

A.B. Adegoke, Effect of direct teacher influence on dependent-prone students' learning outcomes in secondary school mathematics, Electronic Journal of Research in Educational Psychology, 9 (2011), p.283-308.   Google Scholar

Figure 1.  The conceptual model among mathematical skills, learning capacities and STEM multidisciplinary literacy
[1]

Guojing Zhang, Steve Rosencrans, Xuefeng Wang, Kaijun Zhang. Estimating thermal insulating ability of anisotropic coatings via Robin eigenvalues and eigenfunctions. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 1061-1079. doi: 10.3934/dcds.2009.25.1061

[2]

Chong Lai, Lishan Liu, Rui Li. The optimal solution to a principal-agent problem with unknown agent ability. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2579-2605. doi: 10.3934/jimo.2020084

[3]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems & Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[4]

Farzaneh Ahmadzadeh, Kathrina Jederström, Maria Plahn, Anna Olsson, Isabell Foyer. An investigation of the most important factors for sustainable product development using evidential reasoning. Numerical Algebra, Control & Optimization, 2017, 7 (4) : 435-455. doi: 10.3934/naco.2017027

[5]

Liying Wang, Weiguo Zhao, Dan Zhang, Linming Zhao. A geometric inversion algorithm for parameters calculation in Francis turbine. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1373-1384. doi: 10.3934/dcdss.2015.8.1373

[6]

Zengjing Chen, Weihuan Huang, Panyu Wu. Extension of the strong law of large numbers for capacities. Mathematical Control & Related Fields, 2019, 9 (1) : 175-190. doi: 10.3934/mcrf.2019010

[7]

Simone Göttlich, Stephan Knapp. Semi-Markovian capacities in production network models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3235-3258. doi: 10.3934/dcdsb.2017090

[8]

Changyan Di, Qingguo Zhou, Jun Shen, Li Li, Rui Zhou, Jiayin Lin. Innovation event model for STEM education: A constructivism perspective. STEM Education, 2021, 1 (1) : 60-74. doi: 10.3934/steme.2021005

[9]

D. G. Aronson. Self-similar focusing in porous media: An explicit calculation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1685-1691. doi: 10.3934/dcdsb.2012.17.1685

[10]

G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131

[11]

Christine K. Yang, Fred Brauer. Calculation of $R_0$ for age-of-infection models. Mathematical Biosciences & Engineering, 2008, 5 (3) : 585-599. doi: 10.3934/mbe.2008.5.585

[12]

Yegana Ashrafova, Kamil Aida-Zade. Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems. Journal of Industrial & Management Optimization, 2020, 16 (6) : 3011-3033. doi: 10.3934/jimo.2019091

[13]

Qiaojun Situ, Jinzhi Lei. A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1379-1397. doi: 10.3934/mbe.2017071

[14]

Manuel Delgado, Ítalo Bruno Mendes Duarte, Antonio Suárez Fernández. Nonlocal elliptic system arising from the growth of cancer stem cells. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1767-1795. doi: 10.3934/dcdsb.2018083

[15]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[16]

Oleg U. Kirnasovsky, Yuri Kogan, Zvia Agur. Resilience in stem cell renewal: development of the Agur--Daniel--Ginosar model. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 129-148. doi: 10.3934/dcdsb.2008.10.129

[17]

Tomas Alarcon, Philipp Getto, Anna Marciniak-Czochra, Maria dM Vivanco. A model for stem cell population dynamics with regulated maturation delay. Conference Publications, 2011, 2011 (Special) : 32-43. doi: 10.3934/proc.2011.2011.32

[18]

Caleb Mayer, Eric Stachura. Traveling wave solutions for a cancer stem cell invasion model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5067-5093. doi: 10.3934/dcdsb.2020333

[19]

Alan Beggs. Learning in monotone bayesian games. Journal of Dynamics & Games, 2015, 2 (2) : 117-140. doi: 10.3934/jdg.2015.2.117

[20]

Yangyang Xu, Wotao Yin, Stanley Osher. Learning circulant sensing kernels. Inverse Problems & Imaging, 2014, 8 (3) : 901-923. doi: 10.3934/ipi.2014.8.901

 Impact Factor: 

Metrics

  • PDF downloads (32)
  • HTML views (43)
  • Cited by (0)

Other articles
by authors

[Back to Top]