• Previous Article
    A laser-cutting-centered STEM course for improving engineering problem-solving skills of high school students in China
  • STEME Home
  • This Issue
  • Next Article
    Reimagining multiplication as diagrammatic and dynamic concepts via cutting, pasting and rescaling actions
August  2021, 1(3): 186-198. doi: 10.3934/steme.2021014

Neural network training in SCILAB for classifying mango (Mangifera indica) according to maturity level using the RGB color model

1. 

Department of Mechatronics, Instituto Politecnico Nacional, CICATA Unidad Queréro, CP 76090, México

* Correspondence: ecastilloca@ipn.mx; Tel: +52-442-229-0804

Academic Editor: Med Amine Laribi

Received  June 2021 Revised  July 2021 Published  August 2021

Industries that use fruits as raw materials must, at some point in the process, classify them to discard the unsuitable ones and thus ensure the quality of the final product. To produce mango nectar, it is necessary to ensure that the mango is mature enough to start the extraction of the nectar; however, sorting thousands of mangoes may require many people, who can easily lose attention and reduce the accuracy of the result. Such kind of decision can be supported by current Artificial Intelligence techniques. The theoretical details of the processing are presented, as well as the programming code of the neural network using SCILAB as a computer language; the code includes the color extraction from mango images. SCILAB programming is simple, efficient and does not require computers with large processing capacity. The classification was validated with 30 images (TIF format) of Manila variety mango; the mangoes were placed on a blue background to easily separate the background from the object of interest. Four and six mangoes were used to train the neural network. This application of neural networks is part of an undergraduate course on artificial intelligence, which shows the potential of these techniques for solving real and concrete problems.

Citation: Eduardo Castillo-Castaneda. Neural network training in SCILAB for classifying mango (Mangifera indica) according to maturity level using the RGB color model. STEM Education, 2021, 1 (3) : 186-198. doi: 10.3934/steme.2021014
References:
[1]

S.N. JhaS. Chopra and A.R.P. Kingsly, Modeling of color values for nondestructive evaluation of maturity of mango, Journal of Food Engineering, 78 (2007), 22-26.   Google Scholar

[2]

In: https://www.magmar.com.mx/, available 4th July 2021. Google Scholar

[3] S.J. Russell and P. Norvig, Artificial Intelligence: A modern Approach, Prentice Hall, New Jersey, USA, 1995.   Google Scholar
[4]

Bughin, J., Seong, J., Manyika, J., Chui, M. and Joshi, R., Notes from AI frontier: Modeling the impact of AI on the world economy. Discussion paper, 2018, McKinsey Global Institute. Google Scholar

[5] S. Lucci and D. Kopec, Artificial Intelligence in the 21st Century, Mercury Learning and Information, VA, USA, 2015.   Google Scholar
[6]

D.S. Prabha and J.S. Kumar, Assessment of banana fruit maturity by image processing technique, J Food Sci Technol, 52 (2015), 1216-1327.   Google Scholar

[7]

R. TorresE.J. MontesO.A. Pérez and R.D. Andrade, Relación del Color y del Estado de Madurez, con las Propiedades FisicoquȪmica de Frutas Tropicales, Información Tecnológica, 24 (2013), 51-56.   Google Scholar

[8] J.C. Russ, The Image Processing Handbook, Prentice Hall, 1999.   Google Scholar
[9] R.C. González and R.E. Woods, Digital Image Processing, Prentice Hall, 2002.   Google Scholar
[10]

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, 65 (1958).   Google Scholar

[11]

Rojas, R., The Backpropagation Algorithm. Neural Networks, 1996, pp. 149-182. Springer-Verlag. Google Scholar

[12]

D.P. Mandic, A generalized normalized gradient descent algorithm, IEEE Signal Processing Letters, 11 (2004), 115-118.   Google Scholar

show all references

References:
[1]

S.N. JhaS. Chopra and A.R.P. Kingsly, Modeling of color values for nondestructive evaluation of maturity of mango, Journal of Food Engineering, 78 (2007), 22-26.   Google Scholar

[2]

In: https://www.magmar.com.mx/, available 4th July 2021. Google Scholar

[3] S.J. Russell and P. Norvig, Artificial Intelligence: A modern Approach, Prentice Hall, New Jersey, USA, 1995.   Google Scholar
[4]

Bughin, J., Seong, J., Manyika, J., Chui, M. and Joshi, R., Notes from AI frontier: Modeling the impact of AI on the world economy. Discussion paper, 2018, McKinsey Global Institute. Google Scholar

[5] S. Lucci and D. Kopec, Artificial Intelligence in the 21st Century, Mercury Learning and Information, VA, USA, 2015.   Google Scholar
[6]

D.S. Prabha and J.S. Kumar, Assessment of banana fruit maturity by image processing technique, J Food Sci Technol, 52 (2015), 1216-1327.   Google Scholar

[7]

R. TorresE.J. MontesO.A. Pérez and R.D. Andrade, Relación del Color y del Estado de Madurez, con las Propiedades FisicoquȪmica de Frutas Tropicales, Información Tecnológica, 24 (2013), 51-56.   Google Scholar

[8] J.C. Russ, The Image Processing Handbook, Prentice Hall, 1999.   Google Scholar
[9] R.C. González and R.E. Woods, Digital Image Processing, Prentice Hall, 2002.   Google Scholar
[10]

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, 65 (1958).   Google Scholar

[11]

Rojas, R., The Backpropagation Algorithm. Neural Networks, 1996, pp. 149-182. Springer-Verlag. Google Scholar

[12]

D.P. Mandic, A generalized normalized gradient descent algorithm, IEEE Signal Processing Letters, 11 (2004), 115-118.   Google Scholar

2].">Figure 1.  Manual mango classification [2].
Figure 2.  Stages for the implementation of an AI computer program.
Figure 3.  Levels of mango maturity.
Figure 4.  Segmentation applied to separate the airplane from the sky (including clouds).
Figure 5.  Some colors and the corresponding RGB values.
Figure 6.  a), b), c), d) Color extraction images, e) SCILAB code.
Figure 7.  Model of an artificial neuron, named perceptron, with 3 input variables.
Figure 8.  An ANN with 3 layers.
Figure 9.  SCILAB code to calculate de ANN output.
Figure 10.  Training of an ANN from known values of $ X $ and $ Y $ vectors.
Figure 11.  SCILAB program for ANN training.
Figure 12.  Mangoes selected for ANN training.
Figure 13.  Input and output variables for ANN training.
Figure 14.  Preliminary result of the classification of 30 mangoes.
Figure 15.  Green, medium, and mature mangoes for ANN training.
Figure 16.  Result with improved training using 6 mangoes.
[1]

Boguslaw Twarog, Robert Pekala, Jacek Bartman, Zbigniew Gomolka. The changes of air gap in inductive engines as vibration indicator aided by mathematical model and artificial neural network. Conference Publications, 2007, 2007 (Special) : 1005-1012. doi: 10.3934/proc.2007.2007.1005

[2]

Yuantian Xia, Juxiang Zhou, Tianwei Xu, Wei Gao. An improved deep convolutional neural network model with kernel loss function in image classification. Mathematical Foundations of Computing, 2020, 3 (1) : 51-64. doi: 10.3934/mfc.2020005

[3]

Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013

[4]

Roya Soltani, Seyed Jafar Sadjadi, Mona Rahnama. Artificial intelligence combined with nonlinear optimization techniques and their application for yield curve optimization. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1701-1721. doi: 10.3934/jimo.2017014

[5]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[6]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure & Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655

[7]

Ndolane Sene. Fractional input stability and its application to neural network. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 853-865. doi: 10.3934/dcdss.2020049

[8]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[9]

King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021

[10]

Shyan-Shiou Chen, Chih-Wen Shih. Asymptotic behaviors in a transiently chaotic neural network. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 805-826. doi: 10.3934/dcds.2004.10.805

[11]

Veysel Fuat Hatipoğlu. A novel model for the contamination of a system of three artificial lakes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2261-2272. doi: 10.3934/dcdss.2020176

[12]

Graciela Canziani, Rosana Ferrati, Claudia Marinelli, Federico Dukatz. Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes. Mathematical Biosciences & Engineering, 2008, 5 (4) : 691-711. doi: 10.3934/mbe.2008.5.691

[13]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[14]

Yixin Guo, Aijun Zhang. Existence and nonexistence of traveling pulses in a lateral inhibition neural network. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1729-1755. doi: 10.3934/dcdsb.2016020

[15]

Jianhong Wu, Ruyuan Zhang. A simple delayed neural network with large capacity for associative memory. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 851-863. doi: 10.3934/dcdsb.2004.4.851

[16]

Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062

[17]

Sanjay K. Mazumdar, Cheng-Chew Lim. A neural network based anti-skid brake system. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 321-338. doi: 10.3934/dcds.1999.5.321

[18]

Hiroaki Uchida, Yuya Oishi, Toshimichi Saito. A simple digital spiking neural network: Synchronization and spike-train approximation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1479-1494. doi: 10.3934/dcdss.2020374

[19]

Lidong Liu, Fajie Wei, Shenghan Zhou. Major project risk assessment method based on BP neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1053-1064. doi: 10.3934/dcdss.2019072

[20]

K. L. Mak, J. G. Peng, Z. B. Xu, K. F. C. Yiu. A novel neural network for associative memory via dynamical systems. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 573-590. doi: 10.3934/dcdsb.2006.6.573

 Impact Factor: 

Metrics

  • PDF downloads (64)
  • HTML views (132)
  • Cited by (0)

Other articles
by authors

[Back to Top]