• Previous Article
    The Laplace transform as an alternative general method for solving linear ordinary differential equations
  • STEME Home
  • This Issue
  • Next Article
    Examination of modelling in K-12 STEM teacher education: Connecting theory with practice
November  2021, 1(4): 299-308. doi: 10.3934/steme.2021019

Daran robot, a reconfigurable, powerful, and affordable robotic platform for STEM education

1. 

Department of Mechanical and Aerospace Engineering, Brunel University London, London, UB8 3PN, United Kingdom

2. 

Daran Ltd., Tianjin, 300192, China; 1597255167@qq.com (R.L.); cszhangtju@163.com (C.Z.)

Correspondence: Mingfeng.Wang@brunel.ac.uk, Tel: +44 (0) 1895 266411; Tangzhao@daran.tech, Tel: +86 (0) 15222658623

Academic Editor: Giuseppe Carbone

Received  October 2021 Revised  November 2021 Published  November 2021

Robot and programming education, as a key part of STEM education, is attracting more and more attention in the education industry. In this paper, a novel open-sourced educational robotic platform, Daran robot, is proposed with key features in terms of reconfigurable, powerful, and affordable. As an entry-level robotic platform, the Daran robot consists of three individual robots, which are a Mecanum-wheeled robot, a three-wheeled robot, and a 4-DoF robot arm. Both graphical and Python programming environments are developed for students with different entry levels. Thanks to the reconfigurability, four classic constructions of the Daran robot are presented with corresponding case studies, based on which the students can practically learn basic knowledge of sensing and control technologies.

Citation: Mingfeng Wang, Ruijun Liu, Chunsong Zhang, Zhao Tang. Daran robot, a reconfigurable, powerful, and affordable robotic platform for STEM education. STEM Education, 2021, 1 (4) : 299-308. doi: 10.3934/steme.2021019
References:
[1]

Xie, Y., Fang, M. and Shauman, K., STEM education. Annual review of sociology, 2015, 41: 331-357. https://doi.org/10.1146/annurev-soc-071312-145659 doi: 10.1146/annurev-soc-071312-145659.  Google Scholar

[2]

Zhou C, Li Y., The focus and trend of STEM education research in China-visual analysis based on Citespace. Open Journal of Social Sciences, 2021, 9(7): 168-80. https://doi.org/10.4236/jss.2021.97011 doi: 10.4236/jss.2021.97011.  Google Scholar

[3]

Elkin M, Sullivan A, Bers MU. Programming with the KIBO robotics kit in preschool classrooms. Computers in the Schools, 2016, 33(3):169-86. https://doi.org/10.1080/07380569.2016.1216251 doi: 10.1080/07380569.2016.1216251.  Google Scholar

[4]

Mio: https://www.clementoni.com/en/61893-mio-the-robot/. Accessed 17 September 2021 Google Scholar

[5]

Cue: https://www.makewonder.com/. Accessed 22 September 2021 Google Scholar

[6]

Fischertechnik: https://www.cedutech.com/. Accessed 22 September 2021 Google Scholar

[7]

Peng, H. and Huang, Z.C., Design of a welding robot based on Fischertechnik combination model platform. Advanced Materials Research, 2013,619: 384-387. https://doi.org/10.4028/www.scientific.net/AMR.619.384 doi: 10.4028/www.scientific.net/AMR.619.384.  Google Scholar

[8]

Lego: https://www.lego.com/zh-cn/product/robot-inventor-51515. Accessed 22 September 2021 Google Scholar

[9]

ROBOROBO: https://www.roborobo.cn/startpage#. Accessed 22 September 2021 Google Scholar

[10] A Kurniawan, Arduino Nano A Hands-on Guide for Beginner, PE press, 2019.   Google Scholar
[11]

Shigemi, S., Goswami, A. and Vadakkepat, P., ASIMO and humanoid robot research at Honda. In: Goswami A., Vadakkepat P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht, 2018, 55-90. https://doi.org/10.1007/978-94-007-6046-2_9 Google Scholar

[12]

Matatalab: https://matatalab.com/zh-hans/product. Accessed 22 September 2021 Google Scholar

[13]

Chen, J. Research on design and development of tangible programming curriculum in primary school based on computational thinking -take Matatalab tangible programming robots as an example (in Chinese), Master Thesis, Shanghai International Studies University, 2021. Google Scholar

[14]

WeeeMake: https://www.weeemake.com.cn/weeebot-mini. Accessed 22 September 2021 Google Scholar

[15]

DFRobot: http://www.dfrobot.cn/?tag=dfrobot. Accessed 22 September 2021 Google Scholar

[16] A Kurniawan, Arduino Nano A Hands-on Guide for Beginner, PE press, 2019.   Google Scholar
[17]

Raspberry Pi Zero W: https://www.raspberrypi.org/products/raspberry-pi-zero-w/. Accessed 17 September 2021 Google Scholar

[18]

Sudhakara, P., Ganapathy, V., Priyadharshini, B. and Sundaran, K., Obstacle avoidance and navigation planning of a wheeled mobile robot using amended artificial potential field method. Procedia computer science, 2018,133: 998-1004. https://doi.org/10.1016/j.procs.2018.07.076 doi: 10.1016/j.procs.2018.07.076.  Google Scholar

show all references

References:
[1]

Xie, Y., Fang, M. and Shauman, K., STEM education. Annual review of sociology, 2015, 41: 331-357. https://doi.org/10.1146/annurev-soc-071312-145659 doi: 10.1146/annurev-soc-071312-145659.  Google Scholar

[2]

Zhou C, Li Y., The focus and trend of STEM education research in China-visual analysis based on Citespace. Open Journal of Social Sciences, 2021, 9(7): 168-80. https://doi.org/10.4236/jss.2021.97011 doi: 10.4236/jss.2021.97011.  Google Scholar

[3]

Elkin M, Sullivan A, Bers MU. Programming with the KIBO robotics kit in preschool classrooms. Computers in the Schools, 2016, 33(3):169-86. https://doi.org/10.1080/07380569.2016.1216251 doi: 10.1080/07380569.2016.1216251.  Google Scholar

[4]

Mio: https://www.clementoni.com/en/61893-mio-the-robot/. Accessed 17 September 2021 Google Scholar

[5]

Cue: https://www.makewonder.com/. Accessed 22 September 2021 Google Scholar

[6]

Fischertechnik: https://www.cedutech.com/. Accessed 22 September 2021 Google Scholar

[7]

Peng, H. and Huang, Z.C., Design of a welding robot based on Fischertechnik combination model platform. Advanced Materials Research, 2013,619: 384-387. https://doi.org/10.4028/www.scientific.net/AMR.619.384 doi: 10.4028/www.scientific.net/AMR.619.384.  Google Scholar

[8]

Lego: https://www.lego.com/zh-cn/product/robot-inventor-51515. Accessed 22 September 2021 Google Scholar

[9]

ROBOROBO: https://www.roborobo.cn/startpage#. Accessed 22 September 2021 Google Scholar

[10] A Kurniawan, Arduino Nano A Hands-on Guide for Beginner, PE press, 2019.   Google Scholar
[11]

Shigemi, S., Goswami, A. and Vadakkepat, P., ASIMO and humanoid robot research at Honda. In: Goswami A., Vadakkepat P. (eds) Humanoid Robotics: A Reference. Springer, Dordrecht, 2018, 55-90. https://doi.org/10.1007/978-94-007-6046-2_9 Google Scholar

[12]

Matatalab: https://matatalab.com/zh-hans/product. Accessed 22 September 2021 Google Scholar

[13]

Chen, J. Research on design and development of tangible programming curriculum in primary school based on computational thinking -take Matatalab tangible programming robots as an example (in Chinese), Master Thesis, Shanghai International Studies University, 2021. Google Scholar

[14]

WeeeMake: https://www.weeemake.com.cn/weeebot-mini. Accessed 22 September 2021 Google Scholar

[15]

DFRobot: http://www.dfrobot.cn/?tag=dfrobot. Accessed 22 September 2021 Google Scholar

[16] A Kurniawan, Arduino Nano A Hands-on Guide for Beginner, PE press, 2019.   Google Scholar
[17]

Raspberry Pi Zero W: https://www.raspberrypi.org/products/raspberry-pi-zero-w/. Accessed 17 September 2021 Google Scholar

[18]

Sudhakara, P., Ganapathy, V., Priyadharshini, B. and Sundaran, K., Obstacle avoidance and navigation planning of a wheeled mobile robot using amended artificial potential field method. Procedia computer science, 2018,133: 998-1004. https://doi.org/10.1016/j.procs.2018.07.076 doi: 10.1016/j.procs.2018.07.076.  Google Scholar

Figure 1.  Overview of Daran educational robotic platform: (a) Mecanum-wheeled robot, (b) two-wheeled robot, (c) 4-DoF robot arm, and (d) illustration of hardware components
Figure 2.  Detailed illustration of electrical components in Daran educational robotic platform: (a) servomotor, (b) master control board, and (c) sensors
Figure 3.  Illustration of the software interface of Daran robotic platform: (a) robotic platform window, (b) graphical programming environment, and (c) Python programming environment
Figure 4.  Case study Ⅰ: obstacle avoidance of three-wheeled robot based on ultrasonic sensing
Figure 5.  Case study Ⅱ: path following/tracking of a four-wheeled robot based on infrared sensing
Figure 6.  Case study Ⅲ: pick-and-place with a 4-DoF robot arm
Figure 7.  Case study Ⅳ: territory scramble of two reconstructed robots (a four-wheeled robot and a 4-DoF robot arm)
Table 1.  List of robotic platforms for STEM education
Robotic Platform Aiming Age Country Program Pattern Assembly needed Material Open-sourced Price (£)
KIBO [3] 4-24 USA graphical/code Y plastic N 160-433
Mio [4] 8-12 USA graphical/code N plastic N 156
Cue [5] 5-12 USA graphical Y plastic N 110-147
Fischertechnik [6,7] 13+ Germany graphical Y plastic N -
Lego [8] 3-16 Denmark graphical Y plastic/metal N 385
ROBOROBO [9,10] 8-13 Korea code N metal N -
Honda [11] 18+ Japan graphical N plastic N -
Matatalab [12,13] 4-9 China graphical Y metal N 110-258
WeeeMake [14] 5-12 China graphical N plastic N 114-148
DFRobot [15,16] 7-16 China graphical Y plastic N 29-74
Robotic Platform Aiming Age Country Program Pattern Assembly needed Material Open-sourced Price (£)
KIBO [3] 4-24 USA graphical/code Y plastic N 160-433
Mio [4] 8-12 USA graphical/code N plastic N 156
Cue [5] 5-12 USA graphical Y plastic N 110-147
Fischertechnik [6,7] 13+ Germany graphical Y plastic N -
Lego [8] 3-16 Denmark graphical Y plastic/metal N 385
ROBOROBO [9,10] 8-13 Korea code N metal N -
Honda [11] 18+ Japan graphical N plastic N -
Matatalab [12,13] 4-9 China graphical Y metal N 110-258
WeeeMake [14] 5-12 China graphical N plastic N 114-148
DFRobot [15,16] 7-16 China graphical Y plastic N 29-74
Table 2.  Specification of the Daran robotic platform
Robot Name Dimension (L*W*H, mm) Weight (g) Motors No. & torque (Nm) Power supply (V) Price (£)
Mecanum-wheeled robot 212*164*88 942 4 / 1.5 7.4 57
Three-wheeled robot 110*123*90 545 2 / 1.5 7.4 25
4-DoF robot arm 158*100*115 777 4 / 1.5 7.4 47
Control package / - 0 7.4 92
Total / 2264 10 7.4 220
Robot Name Dimension (L*W*H, mm) Weight (g) Motors No. & torque (Nm) Power supply (V) Price (£)
Mecanum-wheeled robot 212*164*88 942 4 / 1.5 7.4 57
Three-wheeled robot 110*123*90 545 2 / 1.5 7.4 25
4-DoF robot arm 158*100*115 777 4 / 1.5 7.4 47
Control package / - 0 7.4 92
Total / 2264 10 7.4 220
[1]

Changyan Di, Qingguo Zhou, Jun Shen, Li Li, Rui Zhou, Jiayin Lin. Innovation event model for STEM education: A constructivism perspective. STEM Education, 2021, 1 (1) : 60-74. doi: 10.3934/steme.2021005

[2]

Dragana Martinovic, Marina Milner-Bolotin. Examination of modelling in K-12 STEM teacher education: Connecting theory with practice. STEM Education, 2021, 1 (4) : 279-298. doi: 10.3934/steme.2021018

[3]

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621

[4]

Yujuan Li, Robert N. Hibbard, Peter L. A. Sercombe, Amanda L. Kelk, Cheng-Yuan Xu. Inspiring and engaging high school students with science and technology education in regional Australia. STEM Education, 2021, 1 (2) : 114-126. doi: 10.3934/steme.2021009

[5]

Sümeyra Uçar. Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2571-2589. doi: 10.3934/dcdss.2020178

[6]

François Alouges, Antonio DeSimone, Luca Heltai, Aline Lefebvre-Lepot, Benoît Merlet. Optimally swimming stokesian robots. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1189-1215. doi: 10.3934/dcdsb.2013.18.1189

[7]

Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437

[8]

Kemal Kilic, Menekse G. Saygi, Semih O. Sezer. Exact and heuristic methods for personalized display advertising in virtual reality platforms. Journal of Industrial & Management Optimization, 2019, 15 (2) : 833-854. doi: 10.3934/jimo.2018073

[9]

Sourabh Bhattacharya, Abhishek Gupta, Tamer Başar. Jamming in mobile networks: A game-theoretic approach. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 1-30. doi: 10.3934/naco.2013.3.1

[10]

Francis Michael Russell, J. C. Eilbeck. Persistent mobile lattice excitations in a crystalline insulator. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1267-1285. doi: 10.3934/dcdss.2011.4.1267

[11]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[12]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[13]

Anna Chiara Lai, Paola Loreti. Robot's finger and expansions in non-integer bases. Networks & Heterogeneous Media, 2012, 7 (1) : 71-111. doi: 10.3934/nhm.2012.7.71

[14]

Ye Jiang, Tiaojun Xiao. Preannouncement strategy of platform-type new product for competing platforms: Technical or marketing information. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020155

[15]

Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1371-1384. doi: 10.3934/dcdss.2019094

[16]

Aiwan Fan, Qiming Wang, Joyati Debnath. A high precision data encryption algorithm in wireless network mobile communication. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1327-1340. doi: 10.3934/dcdss.2019091

[17]

Karan Pattni, Mark Broom, Jan Rychtář. Evolving multiplayer networks: Modelling the evolution of cooperation in a mobile population. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1975-2004. doi: 10.3934/dcdsb.2018191

[18]

Weidong Bao, Haoran Ji, Xiaomin Zhu, Ji Wang, Wenhua Xiao, Jianhong Wu. ACO-based solution for computation offloading in mobile cloud computing. Big Data & Information Analytics, 2016, 1 (1) : 1-13. doi: 10.3934/bdia.2016.1.1

[19]

Chun-Hsu Ko, Jing-Kun Chen. Grasping force based manipulation for multifingered hand-arm Robot using neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 59-74. doi: 10.3934/naco.2014.4.59

[20]

Yubai Liu, Xueshan Gao, Fuquan Dai. Implementation of Mamdami fuzzy control on a multi-DOF two-wheel inverted pendulum robot. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1251-1266. doi: 10.3934/dcdss.2015.8.1251

 Impact Factor: 

Metrics

  • PDF downloads (15)
  • HTML views (23)
  • Cited by (0)

[Back to Top]