# American Institute of Mathematical Sciences

November  2021, 1(4): 309-329. doi: 10.3934/steme.2021020

## The Laplace transform as an alternative general method for solving linear ordinary differential equations

 1 School of Engineering and Technology, Central Queensland University, Bruce Highway, North Rockhampton, QLD 4702, Australia

* Correspondence: w.guo@cqu.edu.au; Tel: +61-7-49309687

Received  October 2021 Revised  November 2021 Published  November 2021

The Laplace transform is a popular approach in solving ordinary differential equations (ODEs), particularly solving initial value problems (IVPs) of ODEs. Such stereotype may confuse students when they face a task of solving ODEs without explicit initial condition(s). In this paper, four case studies of solving ODEs by the Laplace transform are used to demonstrate that, firstly, how much influence of the stereotype of the Laplace transform was on student's perception of utilizing this method to solve ODEs under different initial conditions; secondly, how the generalization of the Laplace transform for solving linear ODEs with generic initial conditions can not only break down the stereotype but also broaden the applicability of the Laplace transform for solving constant-coefficient linear ODEs. These case studies also show that the Laplace transform is even more robust for obtaining the specific solutions directly from the general solution once the initial values are assigned later. This implies that the generic initial conditions in the general solution obtained by the Laplace transform could be used as a point of control for some dynamic systems.

Citation: William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309-329. doi: 10.3934/steme.2021020
##### References:

show all references

##### References:
A system represented by a single block diagram in the state space
The series RL circuit with input $f(t) = E = {E_0}\sin \omega t$
Electric currents in the RL circuit with R = 10 Ω, L = 5 H, ω = 2, and E0 = 10 V
Plot of the output for Case 2 with y(0) = 0 and y′(0) = 0
An example of student's work on solving the ODE in Case 2 by the Laplace transform
Plots of the solution to Case 3 with fixed y(0) = 1 and different values for $y'(0) = {v_1}$
Electric currents of the RL circuit in Case 1 with R = 10 Ω, L = 5 H, ω = 2, and E0 = 10 V [v0 = i(0) for –10, 0, and 10 amperes, respectively]
Plots of the output of the ODE in Case 2 by Laplace transform with different initial values [Black: v0 = –3, v1 = –3; Red: v0 = 0, v1 = 0; Blue: v0 = 5, v1 = 5]
The mixing problem for Case 4
Plots of the mixing processes in the solutions (34) and (35) V = 4000 liters, x0 = 600 kg, y0 = 0 kg; blue curves: q1 = 40 l/m; red curves: q2 = 100 l/m
Plots of the mixing processes in the solutions (36) and (37) V = 4000 liters, x0 = 500 kg, y0 = 100 kg; blue curves: q1 = 40 l/m; red curves: q2 = 100 l/m
Summary of the performances in solving the ODE in Case 2 by students
 Laplace transform Laplace transform Convolution Integration Incorrect 2 6 3 Correct 24 24 24
 Laplace transform Laplace transform Convolution Integration Incorrect 2 6 3 Correct 24 24 24
Summary of attempts to solve Case 3 by 124 students
 $y(0) = 1$ & $y'(0) = 0$ $y(0) = 1$ & $y'(0) = {v_1}$ No attempt 105 105 Convolution 8 (6) 0 Partial fraction 11 (5) 0 Correct solution 11 0 Italic numbers indicate the correct solutions obtained by students
 $y(0) = 1$ & $y'(0) = 0$ $y(0) = 1$ & $y'(0) = {v_1}$ No attempt 105 105 Convolution 8 (6) 0 Partial fraction 11 (5) 0 Correct solution 11 0 Italic numbers indicate the correct solutions obtained by students
 [1] Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029 [2] Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 [3] Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030 [4] Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269 [5] Kai Yan, Zhaoyang Yin. On the initial value problem for higher dimensional Camassa-Holm equations. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1327-1358. doi: 10.3934/dcds.2015.35.1327 [6] Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817 [7] Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5465-5494. doi: 10.3934/dcdsb.2020354 [8] Peiguang Wang, Xiran Wu, Huina Liu. Higher order convergence for a class of set differential equations with initial conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3233-3248. doi: 10.3934/dcdss.2020342 [9] Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431 [10] Davide Bellandi. On the initial value problem for a class of discrete velocity models. Mathematical Biosciences & Engineering, 2017, 14 (1) : 31-43. doi: 10.3934/mbe.2017003 [11] Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737 [12] Davide Guidetti. Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5107-5141. doi: 10.3934/dcds.2013.33.5107 [13] Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042 [14] Dongfen Bian. Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1591-1611. doi: 10.3934/dcdss.2016065 [15] Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135 [16] Yacheng Liu, Runzhang Xu. Potential well method for initial boundary value problem of the generalized double dispersion equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 63-81. doi: 10.3934/cpaa.2008.7.63 [17] Jitao Liu. On the initial boundary value problem for certain 2D MHD-$\alpha$ equations without velocity viscosity. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1179-1191. doi: 10.3934/cpaa.2016.15.1179 [18] Yang Cao, Qiuting Zhao. Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29 (6) : 3833-3851. doi: 10.3934/era.2021064 [19] Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627 [20] Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

Impact Factor:

## Tools

Article outline

Figures and Tables