Advanced Search
Article Contents
Article Contents

On gradient structures for Markov chains and the passage to Wasserstein gradient flows

Abstract Related Papers Cited by
  • We study the approximation of Wasserstein gradient structures by their finite-dimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gradient-flow structures. In particular, we make no use of the linearity of the equations nor of the fact that the Fokker-Planck equation is of second order.
    Mathematics Subject Classification: 35K10, 35K20, 37L05, 49M25, 60F99, 65M08, 60J27, 70G75, 82B35.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Adams, N. Dirr, M. A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: A new micro-macro passage, Communications in Mathematical Physics, 307 (2011), 791-815.doi: 10.1007/s00220-011-1328-4.


    L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.


    S. Arnrich, A. Mielke, M. A. Peletier, G. Savaré and M. Veneroni, Passing to the limit in a Wasserstein gradient flow: From diffusion to reaction, Calc. Var. Part. Diff. Eqns., 44 (2012), 419-454.doi: 10.1007/s00526-011-0440-9.


    J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.doi: 10.1007/s002110050002.


    M. Bessemoulin-Chatard, A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme, Numer. Math., 121 (2012), 637-670.doi: 10.1007/s00211-012-0448-x.


    A. Bradji and J. Fuhrmann, Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes, Appl. Math., 58 (2013), 1-38.doi: 10.1007/s10492-013-0001-y.


    C. Chainais-Hillairet, M. Gisclon and A. Jüngel, A finite-volume scheme for the multidimensional quantum drift-diffusion model for semiconductors, Numer. Methods Partial Differential Equations, 27 (2011), 1483-1510.doi: 10.1002/num.20592.


    S.-N. Chow, W. Huang, Y. Li and H. Zhou, Fokker-Planck equations for a free energy functional or Markov process on a graph, Arch. Rational Mech. Anal., 203 (2012), 969-1008.doi: 10.1007/s00205-011-0471-6.


    M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Rational Mech. Anal., 206 (2012), 997-1038.doi: 10.1007/s00205-012-0554-z.


    M. Erbar and J. Maas, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34 (2014), 1355-1374.doi: 10.3934/dcds.2014.34.1355.


    R. Eymard, T. Gallouët and R. Herbin, The finite volume method, in Handbook of Numerical Analysis. Vol. VII, North Holland, Amsterdam, 2000, 713-1022.


    R. Eymard and J.-M. Hérard, eds., Finite Volumes for Complex Applications V, ISTE, London, 2008.


    J. Fořt, J. Fürst Jiří, H. R. Herbin and F. Hubert, eds., Finite Volumes for Complex Applications. VI. Problems & perspectives. Volume 1, 2, Springer Proceedings in Mathematics, 4, Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-20671-9.


    J. Fuhrmann, A. Linke and H. Langmach, A numerical method for mass conservative coupling between fluid flow and solute transport, Appl. Numer. Math., 61 (2011), 530-553.doi: 10.1016/j.apnum.2010.11.015.


    K. Gärtner, Charge transport in semiconductors and a finite volume scheme, in Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, Springer Proc. Math., 4, Springer, Heidelberg, 2011, 513-522.doi: 10.1007/978-3-642-20671-9_54.


    N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calc. Var. Partial Differential Equations, 39 (2010), 101-120.doi: 10.1007/s00526-009-0303-9.


    N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics, SIAM J. Math. Anal., 45 (2013), 879-899.doi: 10.1137/120886315.


    D. Hilhorst, H. C. V. Do and Y. Wang, A finite volume method for density driven flows in porous media, in CEMRACS'11: Multiscale Coupling of Complex Models in Scientific Computing, ESAIM Proc., 38, EDP Sci., Les Ulis, 2012, 376-386.doi: 10.1051/proc/201238021.


    R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Analysis, 29 (1998), 1-17.doi: 10.1137/S0036141096303359.


    M. Liero, Passing from bulk to bulk-surface evolution in the Allen-Cahn equation, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 919-942.doi: 10.1007/s00030-012-0189-7.


    M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction-diffusion systems, Phil. Trans. Royal Soc. A, 371 (2013), 20120346, 28pp.doi: 10.1098/rsta.2012.0346.


    M. Liero and U. Stefanelli, Weighted inertia-dissipation-energy functionals for semilinear equations, Boll. Unione Mat. Ital. (9), 6 (2013), 1-27.


    J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 261 (2011), 2250-2292.doi: 10.1016/j.jfa.2011.06.009.


    P. A. Markowich, The Stationary Semiconductor Device Equations, Computational Microelectronics, Springer-Verlag, Vienna, 1986.doi: 10.1007/978-3-7091-3678-2.


    D. Matthes and H. Osberger, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM Math. Model. Numer. Anal., 48 (2014), 697-726.doi: 10.1051/m2an/2013126.


    A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.doi: 10.1088/0951-7715/24/4/016.


    A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Part. Diff. Eqns., 48 (2013), 1-31.doi: 10.1007/s00526-012-0538-8.


    A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discr. Cont. Dynam. Systems Ser. S, 6 (2013), 479-499.doi: 10.3934/dcdss.2013.6.479.


    A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Part. Diff. Eqns., 31 (2008), 387-416.doi: 10.1007/s00526-007-0119-4.


    A. Mielke and U. Stefanelli, Weighted energy-dissipation functionals for gradient flows, ESAIM Control Optim. Calc. Var., 17 (2011), 52-85.doi: 10.1051/cocv/2009043.


    L. Onsager, Reciprocal relations in irreversible processes, I+II, Physical Review, 37 (1931), 405-426; Part II, 38, 2265-2267.


    F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory, Arch. Rational Mech. Anal., 141 (1998), 63-103.doi: 10.1007/s002050050073.


    F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.doi: 10.1081/PDE-100002243.


    E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.doi: 10.1002/cpa.20046.

  • 加载中

Article Metrics

HTML views() PDF downloads(241) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint