[1]
|
M. Behbahani and C. Lam, Strongly regular graphs with non-trivial automorphisms, Discrete Math., 311 (2011), 132-144.
doi: 10.1016/j.disc.2010.10.005.
|
[2]
|
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.
|
[3]
|
A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Results in Mathematics and Related Areas, 18, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-74341-2.
|
[4]
|
A. E. Brouwer, Strongly regular graphs, in Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, 2007,852-868.
|
[5]
|
A. E. Brouwer, Parameters of strongly regular graphs, Available from: http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html.
|
[6]
|
A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1939-6.
|
[7]
|
D. Crnković, R. Egan and A. Švob, Orbit matrices of Hadamard matrices and related codes, Discrete Math., 341 (2018), 1199-1209.
doi: 10.1016/j.disc.2018.01.018.
|
[8]
|
D. Crnković, M. Maksimović, B. G. Rodrigues and S. Rukavina, Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.
doi: 10.3934/amc.2016026.
|
[9]
|
D. Crnković, B. G. Rodrigues, S. Rukavina and L. Simčić, Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.
doi: 10.3934/amc.2013.7.161.
|
[10]
|
S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-59806-2.
|
[11]
|
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available from: http://www.codetables.de.
|
[12]
|
W. H. Haemers, R. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17 (1999), 187-209.
doi: 10.1023/A:1026479210284.
|
[13]
|
W. H. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin., 25 (2004), 199-211.
doi: 10.1016/S0195-6698(03)00100-8.
|
[14]
|
M. Harada, Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights, Adv. Math. Commun., 10 (2016), 695-706.
doi: 10.3934/amc.2016035.
|
[15]
|
M. Harada and V. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.
doi: 10.1016/S0012-365X(02)00553-8.
|
[16]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.
|
[17]
|
J. D. Key, T. P. McDonough and V. C. Mavron, Improved partial permutation decoding for Reed-Muller codes, Discrete Math., 340 (2017), 722-728.
doi: 10.1016/j.disc.2016.11.031.
|
[18]
|
F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.
doi: 10.1002/j.1538-7305.1964.tb04075.x.
|
[19]
|
E. Spence, Strongly regular graphs on at most 64 vertices, Available from: http://www.maths.gla.ac.uk/~es/srgraphs.php.
|
[20]
|
F. Szöllősi and P. R. J. Östergård, Enumeration of Seidel matrices, European J. Combin., 69 (2018), 169-184.
doi: 10.1016/j.ejc.2017.10.009.
|
[21]
|
V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, 40, John Wiley & Sons, Inc., New York, 1988.
|