\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of strongly regular graphs

  • * Corresponding author: A. Švob

    * Corresponding author: A. Švob

D. Crnković and A. Švob were supported by Croatian Science Foundation under the project 6732. R. Egan was supported by the Irish Research Council (Government of Ireland Postdoctoral Fellowship, GOIPD/2018/304)

Abstract / Introduction Full Text(HTML) Figure(0) / Table(9) Related Papers Cited by
  • In this paper we introduce the notion of orbit matrices of integer matrices such as Seidel and Laplacian matrices of some strongly regular graphs with respect to their permutation automorphism groups. We further show that under certain conditions these orbit matrices yield self-orthogonal codes over finite fields $ \mathbb{F}_q $, where $ q $ is a prime power and over finite rings $ \mathbb{Z}_m $. As a case study, we construct codes from orbit matrices of Seidel, Laplacian and signless Laplacian matrices of strongly regular graphs. In particular, we construct self-orthogonal codes from orbit matrices of Seidel and Laplacian matrices of the Higman-Sims and McLaughlin graphs.

    Mathematics Subject Classification: Primary: 05E30, 94B05; Secondary: 05E18.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Self-orthogonal codes constructed from Seidel matrices of SRGs

    Graph $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
    $ \mathcal{G}_1^1 $ $ [10,4,6]_3* $ $ [10,6,4]_3* $ 2880
    $ \mathcal{G}_2^1 $ $ [26,11,8]_5 $ $ [26,15,6]_5 $ 576
    $ \mathcal{G}_2^3 $ $ [26,12,8]_5 $ $ [26,14,6]_5 $ 48
    $ \mathcal{G}_2^6 $ $ [26,12,8]_5 $ $ [26,14,6]_5 $ 312
    $ \mathcal{G}_2^8 $ $ [26,9,14]_5* $ $ [28,17,6]_5 $ 124800
    $ \mathcal{G}_3^1 $ $ [28,7,12]_3 $ $ [28,21,4]_3* $ $ 2^{10}\cdot 3^4\cdot 5^1 \cdot 7^1 $
     | Show Table
    DownLoad: CSV

    Table 2.  Self-orthogonal codes constructed from orbit matrices of the Seidel matrix of $ \mathcal{G}_1 $

    $ G \leq \mathrm{Aut}({\mathcal{G}_{1}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
    $ Z_3 $ $ [69,21,15]_3 $ $ [69,48,5]_3 $ 80
    $ Z_{13} $ $ [16,4,9]_3* $ $ [16,12,1]_3 $ 2880
     | Show Table
    DownLoad: CSV

    Table 3.  Self-orthogonal codes constructed from orbit matrices of the Seidel matrix of $ \mathcal{G}_2 $

    $ G \leq \mathrm{Aut}({\mathcal{G}_{2}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
    $ Z_3 $ $ [10,4,6]_3* $ $ [10,6,4]_3* $ 2880
    $ Z_3 $ $ [36,14,12]_3 $ $ [36,22,6]_3 $ 2903040
    $ Z_3 $ $ [28,7,12]_3 $ $ [28,21,4]_3* $ 2903040
    $ Z_3 $ $ [42,15,12]_3 $ $ [42,27,4]_3 $ 17280
    $ Z_3 $ $ [45,15,12]_3 $ $ [45,30,4]_3 $ 5184
    $ Z_{17} $ $ [8,2,6]_3* $ $ [8,6,2]_3* $ 768
     | Show Table
    DownLoad: CSV

    Table 4.  Self-orthogonal codes constructed from orbit matrices of the Laplacian matrix of $ \mathcal{G}_3 $

    $ G \leq \mathrm{Aut}({\mathcal{G}_{3}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
    $ Z_3 $ $ [12,2,3]_3 $ $ [12,10,2]_3* $ $ 2^{10}\cdot 3^5\cdot 5\cdot 7 $
    $ Z_3 $ $ [15,5,6]_3 $ $ [15,10,3]_3 $ 10
    $ Z_3 $ $ [40,10,18]_3 $ $ [40,30,4]_3 $ $ 2^9\cdot 3^6\cdot 5\cdot 13 $
    $ Z_3 $ $ [45,15,12]_3 $ $ [45,30,6]_3 $ 103680
    $ Z_3 $ $ [51,13,12]_3 $ $ [51,38,4]_3 $ 10368
    $ Z_3 $ $ [52,13,12]_3 $ $ [52,39,3]_3 $ 5184
    $ Z_3 $ $ [53,14,12]_3 $ $ [53,39,4]_3 $ 864
    $ Z_5 $ $ [33,9,12]_3 $ $ [33,24,2]_3 $ 96
     | Show Table
    DownLoad: CSV

    Table 5.  Self-orthogonal codes constructed from orbit matrices of Laplace matrix of $ \mathcal{G}_4 $

    $ G \leq \mathrm{Aut}({\mathcal{G}_{4}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
    $ Z_2 $ $ [12,2,6]_2 $ $ [12,10,2]_2* $ 1036800
    $ Z_2 $ $ [14,7,4]_2* $ $ [14,7,4]_2* $ 56448
    $ Z_2 $ $ [40,14,8]_2 $ $ [40,26,4]_2 $ 3932160
    $ Z_2 $ $ [120,24,24]_2 $ $ [120,96,5]_2 $ 1920
    $ Z_2 $ $ [133,27,24]_2 $ $ [133,106,6]_2 $ 336
    $ Z_2 $ $ [134,30,24]_2 $ $ [134,104,5]_2 $ 240
    $ Z_4 $ $ [16,6,6]_2* $ $ [16,10,4]_2* $ 11520
    $ Z_4 $ $ [18,3,6]_2 $ $ [18,15,2]_2* $ $ 2^{13}\cdot 3^{7}\cdot 5^3 $
    $ Z_4 $ $ [18,4,8]_2* $ $ [18,14,2]_2* $ 36864
    $ Z_4 $ $ [36,6,8]_2 $ $ [36,30,2]_2 $ $ 2^{31}\cdot 3^{13} $
    $ Z_4 $ $ [48,8,16_2 $ $ [48,40,4]_2* $ 69120
    $ Z_4 $ $ [60,12,12]_2 $ $ [60,48,4]_2 $ 49152
    $ Z_4 $ $ [61,13,16]_2 $ $ [61,48,4]_2 $ 17280
    $ Z_5 $ $ [56,10,16]_2 $ $ [56,46,2]_2 $ 1440
    $ Z_7 $ $ [40,8,8]_2 $ $ [40,32,2]_2 $ 393216
    $ Z_7 $ $ [40,6,14]_5 $ $ [40,34,2]_5 $ 3072
    $ Z_5 $ $ [56,8,20]_5 $ $ [56,48,2]_5 $ 115200
    $ Z_5 $ $ [54,8,20]_5 $ $ [56,48,2]_5 $ 91729428480
     | Show Table
    DownLoad: CSV

    Table 6.  Self-orthogonal codes constructed from orbit matrices of the signless Laplacian matrix of $ \mathcal{G}_5 $

    $ G \leq \mathrm{Aut}({\mathcal{G}_{5}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
    $ Z_2 $ $ [16,3,8]_2* $ $ [16,13,2]_2* $ $ 2^{15}\cdot 3^5 $
    $ Z_2 $ $ [32,5,16]_2* $ $ [32,27,2]_2* $ $ 2^{26}\cdot 3^2\cdot 5^1\cdot 7^1 $
    $ Z_2 $ $ [40,5,16]_2 $ $ [40,35,2]_2* $ $ 2^{34}\cdot 3^{12}\cdot 5^1 $
    $ Z_2 $ $ [60,3,32]_2 $ $ [60,57,2]_2 $ $ 2^{55}\cdot 3^{18}\cdot 5^8\cdot 7^7\cdot 11^1 $
    $ Z_2 $ $ [64,4,32]_2* $ $ [64,60,2]_2* $ $ 2^{55}\cdot 3^{17}\cdot 5^1\cdot 7^2 $
    $ Z_2 $ $ [64,7,32]_2* $ $ [64,57,4]_2* $ $ 2^{21}\cdot 3^4\cdot 5^1\cdot 7^2\cdot 31^1 $
     | Show Table
    DownLoad: CSV

    Table 7.  Self-orthogonal codes constructed from orbit matrices of the Seidel matrix of $ \mathcal{G}_6 $

    $ G \leq \mathrm{Aut}({\mathcal{G}_{6}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
    $ Z_5 $ $ [19,4,10]_5 $ $ [19,15,2]_5 $ 1920
    $ Z_5 $ $ [20,3,10]_5 $ $ [20,17,2]_5 $ $ 2^{17}\cdot 3^5\cdot 5^4 $
    $ Z_5 $ $ [20,4,14]_5* $ $ [20,16,4]_5* $ 960
     | Show Table
    DownLoad: CSV

    Table 8.  Self-orthogonal codes constructed from orbit matrices of the Laplacian matrix of $ \mathcal{G}_7 $

    $ G \leq \mathrm{Aut}({\mathcal{G}_{7}}) $ $ C $ $ \mathrm{Dual}(C) $ $ |\mathrm{Aut}(C)| $
    $ Z_5 $ $ [54,4,20]_5 $ $ [54,50,2]_5 $ $ 2^{24}\cdot 3^{7}\cdot 5^{1} $
    $ Z_5 $ $ [55,3,20]_5 $ $ [55,52,2]_5* $ $ 2^{44}\cdot 3^{17}\cdot 5^{12}\cdot 7^3\cdot 11^2 \cdot 13\cdot 17\cdot 19\cdot 23 $
     | Show Table
    DownLoad: CSV

    Table 9.  Self-dual codes over $ \mathbb{Z}_4 $ constructed from orbit matrices of signless Laplacian matrices of SRGs $ \mathcal{G}_5 $ and $ \mathcal{G}_8 $

    Graph $ C $ $ d_H(C) $, $ d_E(C) $, $ d_L(C) $ Type
    $ \mathcal{G}_5 $ $ ((8,4^1 2^{6})) $ 2, 8, 4
    $ \mathcal{G}_5 $ $ ((16,4^3 2^{10})) $ 2, 8, 4
    $ \mathcal{G}_5 $ $ ((32,4^5 2^{22})) $ 2, 8, 4
    $ \mathcal{G}_5 $ $ ((36,4^1 2^{34})) $ 2, 8, 4
    $ \mathcal{G}_5 $ $ ((40,4^5 2^{30})) $ 2, 8, 4
    $ \mathcal{G}_8 $ $ ((24,4^1 2^{22})) $ 2, 8, 4
    $ \mathcal{G}_8 $ $ ((24,4^5 2^{14})) $ 2, 8, 4
    $ \mathcal{G}_8 $ $ ((28,4^1 2^{26})) $ 2, 8, 4
    $ \mathcal{G}_8 $ $ ((30,4^0 2^{30})) $ 1, 4, 2
     | Show Table
    DownLoad: CSV
  • [1] M. Behbahani and C. Lam, Strongly regular graphs with non-trivial automorphisms, Discrete Math., 311 (2011), 132-144.  doi: 10.1016/j.disc.2010.10.005.
    [2] W. BosmaJ. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265.  doi: 10.1006/jsco.1996.0125.
    [3] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Results in Mathematics and Related Areas, 18, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-642-74341-2.
    [4] A. E. Brouwer, Strongly regular graphs, in Handbook of Combinatorial Designs, Chapman & Hall/CRC, Boca Raton, FL, 2007,852-868.
    [5] A. E. Brouwer, Parameters of strongly regular graphs, Available from: http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html.
    [6] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Universitext, Springer, New York, 2012. doi: 10.1007/978-1-4614-1939-6.
    [7] D. CrnkovićR. Egan and A. Švob, Orbit matrices of Hadamard matrices and related codes, Discrete Math., 341 (2018), 1199-1209.  doi: 10.1016/j.disc.2018.01.018.
    [8] D. CrnkovićM. MaksimovićB. G. Rodrigues and S. Rukavina, Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582.  doi: 10.3934/amc.2016026.
    [9] D. CrnkovićB. G. RodriguesS. Rukavina and L. Simčić, Self-orthogonal codes from orbit matrices of 2-designs, Adv. Math. Commun., 7 (2013), 161-174.  doi: 10.3934/amc.2013.7.161.
    [10] S. T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings, SpringerBriefs in Mathematics, Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.
    [11] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Available from: http://www.codetables.de.
    [12] W. H. HaemersR. Peeters and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr., 17 (1999), 187-209.  doi: 10.1023/A:1026479210284.
    [13] W. H. Haemers and E. Spence, Enumeration of cospectral graphs, European J. Combin., 25 (2004), 199-211.  doi: 10.1016/S0195-6698(03)00100-8.
    [14] M. Harada, Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights, Adv. Math. Commun., 10 (2016), 695-706.  doi: 10.3934/amc.2016035.
    [15] M. Harada and V. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math., 264 (2003), 81-90.  doi: 10.1016/S0012-365X(02)00553-8.
    [16] W. C. Huffman and  V. PlessFundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
    [17] J. D. KeyT. P. McDonough and V. C. Mavron, Improved partial permutation decoding for Reed-Muller codes, Discrete Math., 340 (2017), 722-728.  doi: 10.1016/j.disc.2016.11.031.
    [18] F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J., 43 (1964), 485-505.  doi: 10.1002/j.1538-7305.1964.tb04075.x.
    [19] E. Spence, Strongly regular graphs on at most 64 vertices, Available from: http://www.maths.gla.ac.uk/~es/srgraphs.php.
    [20] F. Szöllősi and P. R. J. Östergård, Enumeration of Seidel matrices, European J. Combin., 69 (2018), 169-184.  doi: 10.1016/j.ejc.2017.10.009.
    [21] V. D. Tonchev, Combinatorial Configurations: Designs, Codes, Graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, 40, John Wiley & Sons, Inc., New York, 1988.
  • 加载中

Tables(9)

SHARE

Article Metrics

HTML views(2836) PDF downloads(344) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return