[1]
|
S. Ansumali and I. V. Karlin, Stabilization of the lattice Boltzmann method by the H theorem: A numerical test, Phys. Rev. E, 62 (2000), 7999-8003.
doi: 10.1103/PhysRevE.62.7999.
|
[2]
|
T. Bellotti, B. Graille and M. Massot, Finite Difference formulation of any lattice Boltzmann scheme, Numerische Mathematik, 152 (2022), 1-40.
doi: 10.1007/s00211-022-01302-2.
|
[3]
|
P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Physical Review, 94 (1954), 511-525.
doi: 10.1103/PhysRev.94.511.
|
[4]
|
L. Breiman, J. Friedman, C. J. Stone and R. A. Olshen, Classification and Regression Trees, Routledge, 2017.
doi: 10.1201/9781315139470.
|
[5]
|
P. J. Dellar, Bulk and shear viscosities in lattice Boltzmann equations, Physical Review E, 64 (2001), 031203.
doi: 10.1103/PhysRevE.64.031203.
|
[6]
|
D. d'Humières, Generalized lattice-boltzmann equations, Rarefied Gas Dynamics: Theory and Simulations, AIAA Progress in Astronautics and Astronautics, 159 (1992), 450-458.
|
[7]
|
F. Dubois, Equivalent partial differential equations of a Boltzmann scheme, Computers and Mathematics with Applications, 55 (2008), 1441-1449.
doi: 10.1016/j.camwa.2007.08.003.
|
[8]
|
F. Dubois and P. Lallemand, Towards higher order lattice Boltzmann schemes, Journal of Statistical Mechanics: Theory and Experiment, 2009 (2009), P06006.
doi: 10.1088/1742-5468/2009/06/P06006.
|
[9]
|
F. Dubois, P. Lallemand and M. M. Tekitek, On a superconvergent lattice Boltzmann boundary scheme, Computers and Mathematics with Applications, 59 (2010), 2141-2149.
doi: 10.1016/j.camwa.2009.08.055.
|
[10]
|
U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau and J.-P. Rivet, Lattice gas hydrodynamics in two and three dimensions, Complex Systems, 1 (1987), 649-707.
|
[11]
|
M. Geier, A. Greiner and J. G. Korvink, Cascaded digital lattice Boltzmann automata for high Reynolds number flow, Physical Review E, 73 (2006), 066705.
doi: 10.1103/PhysRevE.73.066705.
|
[12]
|
I. Ginzbourg and P. M. Adler, Boundary flow condition analysis for three-dimensional lattice Boltzmann model, Journal of Physics II France, 4 (1994), 191-214.
doi: 10.1051/jp2:1994123.
|
[13]
|
P. Lallemand and L.-S. Luo., Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Physical Review E, 61 (2000), 6546-6562.
doi: 10.1103/PhysRevE.61.6546.
|
[14]
|
P. Lallemand and L.-S. Luo., Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations, Physical Review E, 83 (2011), 056710.
doi: 10.1103/PhysRevE.83.056710.
|
[15]
|
J. Michelet, M. M. Tekitek and M. Berthier, Multiple relaxation time lattice Boltzmann schemes for advection-diffusion equations with application to radar image processing, Journal of Computational Physics, 471 (2022), 111612, 17 pp.
doi: 10.1016/j.jcp.2022.111612.
|
[16]
|
M. L. Minion and D. L. Brown, Performance of under-resolved two-dimensional incompressible flow simulations, II, Journal of Computational Physics, 138 (1997), 734-765.
doi: 10.1006/jcph.1997.5843.
|
[17]
|
P. Nathen, D. Gaudlitz, M. J. Krause and N. A. Adams, On the stability and accuracy of the BGK, MRT and RLB boltzmann schemes for the simulation of turbulent flows, Communications in Computational Physics, 23 (2018), 846-876.
doi: 10.4208/cicp.OA-2016-0229.
|
[18]
|
K. L. Nguyen, M. M. Tekitek, P. Delachartre and M. Berthier, Multiple relaxation time lattice Boltzmann models for multigrid phase-field segmentation of tumors in 3D ultrasound images, SIAM Journal on Imaging Sciences, 12 (2019), 1324-1346.
doi: 10.1137/18M123462X.
|
[19]
|
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: Machine learning in {P}ython, Journal of Machine Learning Research, 12 (2011), 2825-2830.
|
[20]
|
D. Ricot, S. Marié, P. Sagaut and C. Bailly, Lattice Boltzmann Method with selective viscosity filter, Journal of Computational Physics, 228 (2009), 4478-4490.
doi: 10.1016/j.jcp.2009.03.030.
|