\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Reduced basis approximations of parameterized dynamical partial differential equations via neural networks

  • *Corresponding author: Peter Sentz

    *Corresponding author: Peter Sentz 
Abstract / Introduction Full Text(HTML) Figure(9) / Table(2) Related Papers Cited by
  • Projection-based reduced order models are effective at approximating parameter-dependent differential equations that are parametrically separable. When parametric separability is not satisfied, which occurs in both linear and nonlinear problems, projection-based methods fail to adequately reduce the computational complexity. Devising alternative reduced order models is crucial for obtaining efficient and accurate approximations to expensive high-fidelity models. In this work, we develop a timestepping procedure for dynamical parameter-dependent problems, in which a neural-network is trained to propagate the coefficients of a reduced basis expansion. This results in an online stage with a computational cost independent of the size of the underlying problem. We demonstrate our method on several parabolic partial differential equations, including a problem that is not parametrically separable.

    Mathematics Subject Classification: Primary: 68T07, 65M99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  One residual layer of a ResNet showing the structure of the residual basic block used. The matrices and bias vectors define the parameters for this layer

    Figure 2.  A two layer ResNet for timestepping (see also Equation (31)). The residual $ R_j $ functions contain the weights and biases – cf. Figure 1. For compactness, we have introduced the notation $ \tilde{t}_k = t_k + \Delta t/2 $ for the initial input

    Figure 3.  2D advection-diffusion: The mean relative error over the test parameters as a function of time. The measure in Equation (39) is evaluated for the reconstructed solutions using the $ L^2 $-projection (black), the neural network approximation (red), and the coefficients computed using Galerkin POD (blue). The timesteps are marked every 5 steps

    Figure 4.  2D advection-diffusion: (Left) Mean relative $ L^2 $-error Equation (39) with respect to the full-order solution for a timestep size of $ 10\Delta t $. The shaded region denotes $ \pm $ one standard deviation over the test set. Timesteps are marked every 4 steps. (Right) Mean relative $ L^2 $-error Equation (39) with respect to the full-order solution for a timestep size of $ 20\Delta t $. The shaded region denotes $ \pm $ one standard deviation over the test set. Timesteps are marked every 2 steps

    Figure 5.  1D advection-diffusion: The mean relative error over the test parameters as a function of time. The measure in Equation (39) is evaluated for the reconstructed solutions using the $ L^2 $-projection (black), the neural network approximation (red), and the coefficients computed using Galerkin POD (blue). The timesteps are marked every 10 steps

    Figure 6.  1D advection-diffusion: Two solution profiles at different parameter values. The pointwise relative error (in magnitude) with the full-order solution in the neural network approximation (solid) and the POD (dashed) is shown in the background

    Figure 7.  1D advection-diffusion: Relative $ L^2 $-error Equation (38) as a function of time using the $ L^2 $-projection (black), the neural network approximation (red), and the coefficients computed using Galerkin POD (blue). The timesteps are marked every 10 steps. (Left) Error corresponding to $ Pe = .105 $, the smallest Peclet number in the test set. (Right) Error corresponding to $ Pe = 18.94 $, the largest Peclet number in the test set

    Figure 8.  Non-affine diffusion-reaction: Solution snapshots at various points in time

    Figure 9.  Non-affine diffusion-reaction: The mean relative error over the test parameters as a function of time. The measure in Equation (39) is evaluated for the reconstructed solutions using the $ L^2 $-projection (black), and the neural network approximation (red). The model is trained on the time interval to the left of the dashed vertical line; to the right of the dashed vertical line corresponds to extrapolation

    Table 1.  Model parameters and execution times for the examples in Section 5. All numerical experiments were executed on a MacBook Pro with 2 GHz Quad-Core Intel Core i5 processor

    Parameter 2D Adv. Diff. (33) 1D Adv. Diff. (40) 2D non-affine (41)
    # of residual blocks 3 2 2
    hidden layers per block 2 2 4
    width of each block 12 13 18
    total # of weights/biases 1,101 900 2,640
    rollout length $ m $ 3 4 5
    activation function tanh tanh tanh
    optimizer L-BFGS L-BFGS L-BFGS
    training set size 100 $ {\mathit{\boldsymbol{\mu}}} $ values 100 $ {\mathit{\boldsymbol{\mu}}} $ values 225 $ {\mathit{\boldsymbol{\mu}}} $ values
    50 timesteps 100 timesteps 40 timesteps
    NN training time $ \sim $ 1.5 m $ \sim $ 3 h $ \sim $ 1.5 h
    online NN cost per parameter $ \sim 1 $ ms $ \sim 0.4 $ ms $ \sim 0.4 $ ms
    full-order cost per parameter $ \sim 60 $ ms $ \sim 10 $ ms $ \sim 70 $ ms
     | Show Table
    DownLoad: CSV

    Table 2.  Notation used throughout

    Variable Definition
    $ \Omega \in \mathbb{R}^d $ spatial domain
    $ T $ end time of the simulation
    $ u({\mathit{\boldsymbol{x}}}, t; {\mathit{\boldsymbol{\mu}}}) $ PDE solution
    $ F $ differential operator
    $ {\mathit{\boldsymbol{\mu}}} $ vector of $ P $ parameters, $ \mu_1 $, $\dots, \mu_P $
    $ V^h $: $ \phi_1 $, $\dots, \phi_{N_h} $ full-order basis on mesh $ h $
    $ V^{ \text{rb}} $: $ \psi_1 $, $ \dots, \psi_{N_{ \text{rb}}} $ reduced basis on mesh $ h $
    $ t_k $ $ k=1 $, $\dots, N_t $ timestep $ k $ with $ t_{N_{t}} = T $
    $ N_t $ number of timesteps to the end time
    $ \mathcal{D} $ parameter space
    $ N_\text{s} $ number of POD samples
    $ \mathcal{D}_{\text{POD}} $ POD sample space
    $ S_j $ data matrix for parameter sample $ {{\mathit{\boldsymbol{\mu}}}}_j $
    $ U $ data matrix combining all compressed samples
    $ N_{ \text{rb}_j} $ first stage basis functions for parameter sample $ j $ (SVD)
    $ \hat{n}_i $ # of retained singular values for parameter sample $ i $
    $ \epsilon_{{\mathit{\boldsymbol{\mu}}}} $ stopping criteria, first stage
    $ \epsilon_{t} $ stopping criteria, second stage
    $ {\mathit{\boldsymbol{\alpha}}}(t;{\mathit{\boldsymbol{\mu}}}) $ vector of full-order basis coefficients
    $ {\mathit{\boldsymbol{c}}}(t;{\mathit{\boldsymbol{\mu}}}) $ vector of reduced basis coefficients
    $ u^{rb} $ reduced order PDE solution
    $ \mathcal{N}_R $ mapping of a parameter to RB coefficient
    $ L_T $ least squares single-step loss
    $ L_T^m $ least squares multi-step loss
    $ \mathcal{T} $ a training set specifying time nodes and parameters
    $ \mathcal{B} $ a mini-batch defined as a subset of $ \mathcal{T} $
    $ \mathcal{N}_T $ the neural net and mapping
    $ \mathcal{D}_{\text{train}} $ training set of parameters
    $ N_{\text{train}} $ number of training samples
    $ \mathcal{F} $ training data features
    $ \mathcal{T} $ training data targets
    $ L $ number of layers in a ResNet
    $ R_i $ ResNet block
    $ I $ identity
    $ A^{(j)} $ dense NN layer
    $ W^{(j)} $ weight matrix
    $ b^{(j)} $ bias vector
    $ \sigma $ activation function
     | Show Table
    DownLoad: CSV
  • [1] S. E. AhmedO. SanA. Rasheed and T. Iliescu, Nonlinear proper orthogonal decomposition for convection-dominated flows, Phys. Fluids, 33 (2021).  doi: 10.1063/5.0074310.
    [2] J. Baker, E. Cherkaev, A. Narayan and B. Wang, Learning proper orthogonal decomposition of complex dynamics using heavy-ball neural ODEs, J. Sci. Comput., 95 (2023), Paper No. 54, 27 pp. doi: 10.1007/s10915-023-02176-8.
    [3] P. BennerS. Gugercin and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483-531.  doi: 10.1137/130932715.
    [4] R. Bollapragada, J. Nocedal, D. Mudigere, H. J. Shi and P. T. P. Tang, A progressive batching L-BFGS method for machine learning, Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, (2018), 620-629.
    [5] K. CarlbergM. Barone and H. Antil, Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction, J. Comput. Phys., 330 (2017), 693-734.  doi: 10.1016/j.jcp.2016.10.033.
    [6] F. CasenaveA. Ern and T. Lelievre, A nonintrusive reduced basis method applied to aeroacoustic simulations, Adv. Comput. Math., 41 (2015), 961-986.  doi: 10.1007/s10444-014-9365-0.
    [7] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), 2737-2764.  doi: 10.1137/090766498.
    [8] J. H. ChaudhryL. N. Olson and P. Sentz, A least-squares finite element reduced basis method, SIAM J. Sci. Comput., 43 (2021), A1081-A1107.  doi: 10.1137/090766498.
    [9] R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. K. Duvenaud, Neural ordinary differential equations, Advances in Neural Information Processing Systems, Montréal, Canada, (2018).
    [10] M. DrohmannB. Haasdonk and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34 (2012), A937-A969.  doi: 10.1137/10081157X.
    [11] B. A. Freno and K. T. Carlberg, Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations, Comput. Methods Appl. Mech. Engrg., 348 (2019), 250-296.  doi: 10.1016/j.cma.2019.01.024.
    [12] S. Fresca, L. Dede´ and A. Manzoni, A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs, J. Sci. Comput., 87 (2021), Paper No. 61, 36 pp. doi: 10.1007/s10915-021-01462-7.
    [13] S. Fresca and A. Manzoni, POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition, Comput. Methods Appl. Mech. Engrg., 388 (2022), 114181, 27 pp. doi: 10.1016/j.cma.2021.114181.
    [14] S. GiereT. IliescuV. John and D. Wells, SUPG reduced order models for convection-dominated convection–diffusion–reaction equations, Comput. Methods Appl. Mech. Engrg., 289 (2015), 454-474.  doi: 10.1016/j.cma.2015.01.020.
    [15] M. A. Grepl, Certified reduced basis methods for nonaffine linear time-varying and nonlinear parabolic partial differential equations, Math. Models Methods Appl. Sci., 22 (2012), 1150015.  doi: 10.1142/S0218202511500151.
    [16] M. A. GreplY. MadayN. C. Nguyen and A. T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM Math. Model. Numer. Anal., 41 (2007), 575-605.  doi: 10.1051/m2an:2007031.
    [17] E. Haber and L. Ruthotto, Stable architectures for deep neural networks, Inverse Problems, 34 (2017), 014004.  doi: 10.1088/1361-6420/aa9a90.
    [18] K. HeX. ZhangS. Ren and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770-778.  doi: 10.1109/CVPR.2016.90.
    [19] J. S. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363 (2018), 55-78.  doi: 10.1016/j.jcp.2018.02.037.
    [20] R. LamA. Sanchez-GonzalezM. WillsonP. WirnsbergerM. FortunatoF. AletS. RavuriT. EwaldsZ. Eaton-RosenW. HuA. MeroseS. HoyerG. HollandO. VinyalsJ. StottA. PritzelS. Mohamed and P. Battaglia, Learning skillful medium-range global weather forecasting, Science, 382 (2023), 1416-1421.  doi: 10.1126/science.adi2336.
    [21] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program., 45 (1989), 503-528.  doi: 10.1007/BF01589116.
    [22] R. MaulikB. Lusch and P. Balaprakash, Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders, Phys. Fluids, 33 (2021).  doi: 10.1063/5.0039986.
    [23] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp., 35 (1980), 773-782.  doi: 10.1090/S0025-5718-1980-0572855-7.
    [24] M. Ohlberger and S. Rave, Reduced basis methods: Success, limitations and future challenges, preprint, (2015), arXiv: 1511.02021.
    [25] P. PacciariniP. Gervasio and A. Quarteroni, Spectral based discontinuous Galerkin reduced basis element method for parametrized Stokes problems, Comput. Math. Appl., 72 (2016), 1977-1987.  doi: 10.1016/j.camwa.2016.01.030.
    [26] E. J. Parish and K. T. Carlberg, Time-series machine-learning error models for approximate solutions to parameterized dynamical systems, Comput. Methods Appl. Mech. Engrg., 365 (2020), 112990, 44 pp. doi: 10.1016/j.cma.2020.112990.
    [27] R. G. Patel, N. A. Trask, M. A. Wood and E. C. Cyr, A physics-informed operator regression framework for extracting data-driven continuum models, Comput. Methods Appl. Mech. Engrg., 373 (2021), 113500, 23 pp. doi: 10.1016/j.cma.2020.113500.
    [28] J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, P. Hassanzadeh, K. Kashinath and A. Anandkumar, Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators, preprint, (2022), arXiv: 2202.11214.
    [29] A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, Springer International Publishing, Switzerland, 2016. doi: 10.1007/978-3-319-15431-2.
    [30] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae, G. T. Bercea, G. R. Markall and P. H. J. Kelly, Firedrake: Automating the finite element method by composing abstractions, ACM Trans. Math. Software, 43 (2016), Art. 24, 27 pp. doi: 10.1145/2998441.
    [31] C. J. G. Rojas, A. Dengel and M. D. Ribeiro, Reduced-order model for fluid flows via neural ordinary differential equations, preprint, (2021), arXiv: 2102.02248.
    [32] G. RozzaD. B.P Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15 (2008), 229-275.  doi: 10.1007/s11831-008-9019-9.
    [33] S. Rubino, A streamline derivative POD-ROM for advection-diffusion-reaction equations, ESAIM Proc. Surveys, 64 (2018), 121-136.  doi: 10.1051/proc/201864121.
    [34] Q. WangJ. S. Hesthaven and D. Ray, Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, J. Comput. Phys., 384 (2019), 289-307.  doi: 10.1016/j.jcp.2019.01.031.
    [35] E Weinan, A proposal on machine learning via dynamical systems, Commun. Math. Stat., 5 (2017), 1-11.  doi: 10.1007/s40304-017-0103-z.
    [36] K. Wu and D. Xiu, Data-driven deep learning of partial differential equations in modal space, J. Comput. Phys., 408 (2020), 109307.  doi: 10.1016/j.jcp.2020.109307.
    [37] J. Xu and K. Duraisamy, Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics, Comput. Methods Appl. Mech. Engrg., 372 (2020), 113379, 36 pp. doi: 10.1016/j.cma.2020.113379.
  • 加载中

Figures(9)

Tables(2)

SHARE

Article Metrics

HTML views(587) PDF downloads(187) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return