[1]
|
S. E. Ahmed, O. San, A. Rasheed and T. Iliescu, Nonlinear proper orthogonal decomposition for convection-dominated flows, Phys. Fluids, 33 (2021).
doi: 10.1063/5.0074310.
|
[2]
|
J. Baker, E. Cherkaev, A. Narayan and B. Wang, Learning proper orthogonal decomposition of complex dynamics using heavy-ball neural ODEs, J. Sci. Comput., 95 (2023), Paper No. 54, 27 pp.
doi: 10.1007/s10915-023-02176-8.
|
[3]
|
P. Benner, S. Gugercin and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483-531.
doi: 10.1137/130932715.
|
[4]
|
R. Bollapragada, J. Nocedal, D. Mudigere, H. J. Shi and P. T. P. Tang, A progressive batching L-BFGS method for machine learning, Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, (2018), 620-629.
|
[5]
|
K. Carlberg, M. Barone and H. Antil, Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction, J. Comput. Phys., 330 (2017), 693-734.
doi: 10.1016/j.jcp.2016.10.033.
|
[6]
|
F. Casenave, A. Ern and T. Lelievre, A nonintrusive reduced basis method applied to aeroacoustic simulations, Adv. Comput. Math., 41 (2015), 961-986.
doi: 10.1007/s10444-014-9365-0.
|
[7]
|
S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), 2737-2764.
doi: 10.1137/090766498.
|
[8]
|
J. H. Chaudhry, L. N. Olson and P. Sentz, A least-squares finite element reduced basis method, SIAM J. Sci. Comput., 43 (2021), A1081-A1107.
doi: 10.1137/090766498.
|
[9]
|
R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. K. Duvenaud, Neural ordinary differential equations, Advances in Neural Information Processing Systems, Montréal, Canada, (2018).
|
[10]
|
M. Drohmann, B. Haasdonk and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34 (2012), A937-A969.
doi: 10.1137/10081157X.
|
[11]
|
B. A. Freno and K. T. Carlberg, Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations, Comput. Methods Appl. Mech. Engrg., 348 (2019), 250-296.
doi: 10.1016/j.cma.2019.01.024.
|
[12]
|
S. Fresca, L. Dede´ and A. Manzoni, A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs, J. Sci. Comput., 87 (2021), Paper No. 61, 36 pp.
doi: 10.1007/s10915-021-01462-7.
|
[13]
|
S. Fresca and A. Manzoni, POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition, Comput. Methods Appl. Mech. Engrg., 388 (2022), 114181, 27 pp.
doi: 10.1016/j.cma.2021.114181.
|
[14]
|
S. Giere, T. Iliescu, V. John and D. Wells, SUPG reduced order models for convection-dominated convection–diffusion–reaction equations, Comput. Methods Appl. Mech. Engrg., 289 (2015), 454-474.
doi: 10.1016/j.cma.2015.01.020.
|
[15]
|
M. A. Grepl, Certified reduced basis methods for nonaffine linear time-varying and nonlinear parabolic partial differential equations, Math. Models Methods Appl. Sci., 22 (2012), 1150015.
doi: 10.1142/S0218202511500151.
|
[16]
|
M. A. Grepl, Y. Maday, N. C. Nguyen and A. T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM Math. Model. Numer. Anal., 41 (2007), 575-605.
doi: 10.1051/m2an:2007031.
|
[17]
|
E. Haber and L. Ruthotto, Stable architectures for deep neural networks, Inverse Problems, 34 (2017), 014004.
doi: 10.1088/1361-6420/aa9a90.
|
[18]
|
K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770-778.
doi: 10.1109/CVPR.2016.90.
|
[19]
|
J. S. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363 (2018), 55-78.
doi: 10.1016/j.jcp.2018.02.037.
|
[20]
|
R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri, T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott, A. Pritzel, S. Mohamed and P. Battaglia, Learning skillful medium-range global weather forecasting, Science, 382 (2023), 1416-1421.
doi: 10.1126/science.adi2336.
|
[21]
|
D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program., 45 (1989), 503-528.
doi: 10.1007/BF01589116.
|
[22]
|
R. Maulik, B. Lusch and P. Balaprakash, Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders, Phys. Fluids, 33 (2021).
doi: 10.1063/5.0039986.
|
[23]
|
J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comp., 35 (1980), 773-782.
doi: 10.1090/S0025-5718-1980-0572855-7.
|
[24]
|
M. Ohlberger and S. Rave, Reduced basis methods: Success, limitations and future challenges, preprint, (2015), arXiv: 1511.02021.
|
[25]
|
P. Pacciarini, P. Gervasio and A. Quarteroni, Spectral based discontinuous Galerkin reduced basis element method for parametrized Stokes problems, Comput. Math. Appl., 72 (2016), 1977-1987.
doi: 10.1016/j.camwa.2016.01.030.
|
[26]
|
E. J. Parish and K. T. Carlberg, Time-series machine-learning error models for approximate solutions to parameterized dynamical systems, Comput. Methods Appl. Mech. Engrg., 365 (2020), 112990, 44 pp.
doi: 10.1016/j.cma.2020.112990.
|
[27]
|
R. G. Patel, N. A. Trask, M. A. Wood and E. C. Cyr, A physics-informed operator regression framework for extracting data-driven continuum models, Comput. Methods Appl. Mech. Engrg., 373 (2021), 113500, 23 pp.
doi: 10.1016/j.cma.2020.113500.
|
[28]
|
J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, P. Hassanzadeh, K. Kashinath and A. Anandkumar, Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators, preprint, (2022), arXiv: 2202.11214.
|
[29]
|
A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, Springer International Publishing, Switzerland, 2016.
doi: 10.1007/978-3-319-15431-2.
|
[30]
|
F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. McRae, G. T. Bercea, G. R. Markall and P. H. J. Kelly, Firedrake: Automating the finite element method by composing abstractions, ACM Trans. Math. Software, 43 (2016), Art. 24, 27 pp.
doi: 10.1145/2998441.
|
[31]
|
C. J. G. Rojas, A. Dengel and M. D. Ribeiro, Reduced-order model for fluid flows via neural ordinary differential equations, preprint, (2021), arXiv: 2102.02248.
|
[32]
|
G. Rozza, D. B.P Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15 (2008), 229-275.
doi: 10.1007/s11831-008-9019-9.
|
[33]
|
S. Rubino, A streamline derivative POD-ROM for advection-diffusion-reaction equations, ESAIM Proc. Surveys, 64 (2018), 121-136.
doi: 10.1051/proc/201864121.
|
[34]
|
Q. Wang, J. S. Hesthaven and D. Ray, Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, J. Comput. Phys., 384 (2019), 289-307.
doi: 10.1016/j.jcp.2019.01.031.
|
[35]
|
E Weinan, A proposal on machine learning via dynamical systems, Commun. Math. Stat., 5 (2017), 1-11.
doi: 10.1007/s40304-017-0103-z.
|
[36]
|
K. Wu and D. Xiu, Data-driven deep learning of partial differential equations in modal space, J. Comput. Phys., 408 (2020), 109307.
doi: 10.1016/j.jcp.2020.109307.
|
[37]
|
J. Xu and K. Duraisamy, Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics, Comput. Methods Appl. Mech. Engrg., 372 (2020), 113379, 36 pp.
doi: 10.1016/j.cma.2020.113379.
|